

GCSE Chemistry

Electron Configuration

Mark Scheme

Time available: 45 minutes Marks available: 44 marks

www.accesstuition.com

1. (a) B
(b) D
(c) E
(d) C
(e) 92.5×6 and
7×7.5
$\frac{607.5}{100}$
6.075
6.08
allow 6.08 with no working shown for 4 marks
2. (a) (i) electronic structure 2,3 drawn allow any representation of electrons, such as, dots, crosses, or numbers $(2,3)$
(ii) nucleus
(iii) protons and neutrons
do not allow electrons in nucleus
(relative charge of proton) +1
allow positive
(relative charge of neutron) 0
allow no charge/neutral
ignore number of particles
(b) too many electrons in the first energy level or inner shell
allow inner shell can only have a maximum of 2 electrons
too few electrons in the second energy level or outer shell
allow neon has 8 electrons in its outer shell or neon does not have 1 electron in its outer shell
allow neon has a stable arrangement of electrons or a full outer shell

neon does not have 9 electrons or neon has 10 electrons

allow one electron missing
allow fluorine has 9 electrons
3. (a) carbon accept C

1

1
4. (a) (i) same number of shells/2 full shells/3 shells/same number of energy levels
any 1 for 1 mark
increasing number of electrons/different number of electrons/
number of electrons same as group
number
(if electrons not specifically mentioned assume they are referring to electrons)
any 1 for 1 mark
(ii) all have 7 electrons in outer shell/same number in outer shell/ each has one electron missing from outer shell each can accept one electron
any 1 for 1 mark
number of shells/energy levels increases
increasing number of electrons
any 1 for 1 mark
(b) (i) increases down group/decreases up for 1 mark
(ii) down group atoms get bigger/larger/have more shells/ more energy levels
for 1 mark
electrons further away from nucleus/more shielding down group
for 1 mark
outer electron more easily lost/less firmly held
for 1 mark
3
(c) H^{+}or has positive ions/one electron in outer shell/can lose one electron $/ \mathrm{H}^{+}$ions discharged at negative electrode (max 2) covalent bonds or compounds/forms diatomic mols. or example/ ability to form H^{-}ions/non-conductor/
low Mt.Pt or low B.P. (max 2)
(overall max 3)
5. (i) B or 2, 8, 1 for one mark
(ii) A or 2, 8
for one mark
6. (a) D
(b) B
(c) any two from:
(Group 1 elements)

- have lower melting / boiling points
- have lower densities
- are less strong
- are softer
allow (Group 1 elements are) more malleable / ductile allow (Group 1 elements) are not useful as catalysts ignore transition elements form coloured compounds ignore transition elements form ions with different charges ignore references to chemical properties
allow converse statements for transition elements
(d)

allow any combination of $x, \cdot, o, e^{(-)}$for electrons
(e) delocalised electrons allow free electrons
(the electrons) carry (electrical) charge ignore current / electricity for charge
(the electrons move) through the metal / aluminium / structure ignore throughout for through
(f) ionic
two electrons (are transferred)
magnesium ions and oxide ions are formed
allow Mg^{2+} (ions) and O^{2-} (ions) are formed
allow magnesium forms positive ions and oxygen forms negative ions
allow (both) form a complete outer shell

