

GCSE Chemistry

Gases and Solutions

Mark Scheme

Time available: 56 minutes Marks available: 52 marks

Mark schemes

1. (a) silicon is less reactive than carbon
allow converse
allow silicon is below carbon (in the reactivity series)
(because) carbon displaces silicon (from silicon dioxide) ignore (because) carbon reduces silicon dioxide ignore references to hydrogen
(b) more energy is needed (to obtain aluminium)
ignore references to electricity
(because) aluminium is obtained (from aluminium oxide) by electrolysis
(conversion 1.2 kg =) 1200 (g)
(number of moles of $\mathrm{SiO}_{2}=\frac{1200}{60}$) $=20$
allow correct use of an incorrectly converted or unconverted mass of SiO_{2} allow correct use of an incorrectly calculated M_{r} of SiO_{2}
(number of moles of $\mathrm{Mg}=20 \times 2$) $=40$ allow correct use of an incorrectly calculated number of moles of SiO_{2}
(mass of $\mathrm{Mg}=40 \times 24)=960(\mathrm{~g})$ allow correct use of an incorrectly calculated number of moles of Mg
alternative approach:
$\left(M_{\mathrm{r}}\right.$ of $\left.\mathrm{SiO}_{2}=28+(2 \times 16)\right)=60(1)$
48 g Mg reacts with $60 \mathrm{~g} \mathrm{SiO}_{2}$ (1)
allow correct use of an incorrectly calculated M_{r} of SiO_{2}
(conversion $1.2 \mathrm{~kg}=$) $1200(\mathrm{~g})(1)$
$48 \times \frac{1200}{60}\left(\mathrm{~g} \mathrm{Mg}\right.$ reacts with $1200 \mathrm{~g} \mathrm{SiO}_{2}$) (1) allow correct use of an incorrectly calculated mass of Mg and / or incorrectly converted or unconverted mass of SiO_{2}
$=960(\mathrm{~g})(1)$
(e)

allow any combination of $x, \cdot, o, e^{(-)}$for electrons
(f) (volume of oxygen for $\left.30 \mathrm{~cm}^{3} \mathrm{Si}_{2} \mathrm{H}_{6}=3.5 \times 30\right)=105\left(\mathrm{~cm}^{3}\right)$
(volume of water (vapour) $=3 \times 30)=90\left(\mathrm{~cm}^{3}\right)$
allowed alternative approach:
(moles $\mathrm{S}_{2} \mathrm{H}_{6}=\frac{0.03}{24}$) 0.00125 (1)
(moles water vapour formed $=3 \times 0.00125=$) 0.00375
and
(moles oxygen used $=3.5 \times 0.00125=$) 0.004375 (1)
allow correct use of an incorrectly calculated number of moles of $\mathrm{Si}_{2} \mathrm{H}_{6}$
(moles excess oxygen $=\frac{0.15}{24}-0.004375=$) $0.001875(1)$
allow correct use of an incorrectly calculated number of moles of oxygen used
(volume of gases $=24 \times(0.00375+0.001875)=0.135 \mathrm{dm}^{3}=$) $135\left(\mathrm{~cm}^{3}\right)$ (1)
allow correct use of an incorrectly calculated number of moles of excess oxygen and / or moles of water vapour formed
2. (a) potassium chloride
allow KCI
(b) $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
ignore state symbols
(c) copper carbonate and copper oxide only
(Step 5) to make sure all the (hydrochloric) acid reacts
(Step 6) to remove the excess magnesium oxide ignore to remove impurities
(e) using a (boiling) water bath
or
using an electric heater
(f) \quad ($\left.\mathrm{moles} \mathrm{Fe}=\frac{14}{56}=\right) 0.25(\mathrm{~mol})$
$\left(\right.$ moles $\left.\mathrm{Cl}_{2}=\frac{3}{2} 2 \times 0.25=\right) 0.375(\mathrm{~mol})$
allow correct use of an incorrectly calculated number of moles of Fe
(volume $\left.\mathrm{Cl}_{2}=24 \times 0.375\right)=9.0\left(\mathrm{dm}^{3}\right)$
allow correct use of an incorrectly calculated number of moles of Cl_{2}
3. (a) mixture has a lower melting point (than aluminium oxide)
allow cryolite lowers melting point (of aluminium oxide) ignore boiling point
do not accept cryolite is a catalyst
(so) less energy needed
ignore cost
(b) aluminium ions gain electrons
(c) $2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-}$
allow multiples
allow 1 mark for an unbalanced equation containing correct species
(d) the electrode reacts with oxygen
the electrode is carbon / graphite
(so) carbon dioxide is produced
allow (so) the electrode / carbon / graphite is used up allow (so) the electrode / carbon / graphite is burned away
ignore (so) the electrode / carbon / graphite is worn away ignore (so) the electrode / carbon / graphite is corroded
(e)
$\left(M_{\mathrm{r}}\right.$ of $\left.\mathrm{Al}_{2} \mathrm{O}_{3}=\right) 102$

$$
\begin{aligned}
\left(\frac{2000000}{102}=\right. &) 19608\left(\mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}\right) \\
& \text { allow correct calculation using incorrectly calculated } \\
& \text { value of } \mathrm{M}_{r} \text { of } \mathrm{Al}_{2} \mathrm{O}_{3}
\end{aligned}
$$

alternative approach:
($2 \mathrm{Mr}_{\mathrm{r}}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}=$) 204 (1)
$204\left(\mathrm{~kg}\right.$ of $\left.\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ gives $96\left(\mathrm{~kg}\right.$ of $\left.\mathrm{O}_{2}\right)(1)$
(2000 kg of $\mathrm{Al}_{2} \mathrm{O}_{3}$ gives)
$\frac{2000}{204} \times 96\left(\mathrm{~kg}\right.$ of $\left.\mathrm{O}_{2}\right)$
or
$\frac{2000000}{204} \times 96\left(\mathrm{~g}\right.$ of $\left.\mathrm{O}_{2}\right)(1)$
$=941(\mathrm{~kg})(1)$
(f) hydrogen (gas) would be produced (instead of sodium)
(because) sodium is more reactive than hydrogen
(g)

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { an answer of } 50700\left(\mathrm{dm}^{3}\right) \text { scores } 2 \text { marks } \\
\text { an answer of } 50.7\left(\mathrm{dm}^{3}\right) \text { scores } 1 \text { mark } \\
\left(\frac{150000}{71}=\right) 2113\left(\mathrm{~mol} \text { of } \mathrm{Cl}_{2}\right)
\end{array} \\
& \text { or } \\
& \left(\text { volume of } 1 \mathrm{~g} \text { of } \mathrm{Cl}_{2}=\frac{24}{71}=\right) 0.34\left(\mathrm{dm}^{3}\right) \\
& \left(\frac{150000}{71} \times 24\right)=50700\left(\mathrm{dm}^{3}\right)
\end{aligned} \begin{aligned}
& \text { allow } 50704.22535\left(\mathrm{dm}^{3}\right) \text { correctly rounded to at least } 2 \\
& \text { significant figures } \\
& \text { allow correct calculation using their calculated number } \\
& \text { of moles and/or calculated volume of } 1 \mathrm{~g}
\end{aligned}
$$

4. (a) (delivery) tube sticks into the acid
the acid would go into the water or the acid would leave the flask or go up the delivery tube
ignore no gas collected
(b) any one from:

- bung not put in firmly / properly
- gas lost before bung put in
- leak from tube
(c) all of the acid has reacted
(d) take more readings in range 0.34 g to 0.54 g
take more readings is insufficient ignore repeat
(e) $\underline{95}$

24000
0.00396
or
3.96×10^{-3}
(f) use a pipette / burette to measure the acid
because it is more accurate volume than a measuring cylinder
or
greater precision than a measuring cylinder
or
use a gas syringe to collect the gas
so it will not dissolve in water
or
use a flask with a divider
accept description of tube suspended inside flask
so no gas escapes when bung removed
(g) they should be collected because carbon dioxide is left in flask at end
and it has the same volume as the air collected / displaced

