

GCSE Chemistry

Gases and Solutions

Mark Scheme

Time available: 56 minutes Marks available: 52 marks

www.accesstuition.com

Mark schemes

1.	(a)	silicon is less reactive than carbon allow converse allow silicon is below carbon (in the reactivity series)	
		(herewar) or there diamages alligns (from alligns disvide)	1
		(because) carbon displaces silicon (from silicon dioxide) ignore (because) carbon reduces silicon dioxide	
		ignore references to hydrogen	1
	(b)	more energy is needed (to obtain aluminium) ignore references to electricity	
			1
		(because) aluminium is obtained (from aluminium oxide) by electrolysis	1
	(c)	both products are solid	1
	(d)	$(M_{\rm r} \text{ of } {\rm SiO}_2 = 28 + (2 \times 16)) = 60$	1
		(conversion 1.2 kg =) 1200 (g)	1
		(number of moles of SiO ₂ = $\frac{1200}{60}$) = 20	
		allow correct use of an incorrectly converted or unconverted mass of SiO_2	
		allow correct use of an incorrectly calculated M_r of SiO ₂	1
		(number of moles of Mg = 20×2) = 40 allow correct use of an incorrectly calculated number of moles of SiO ₂	
			1
		(mass of Mg = 40 × 24) = 960 (g) allow correct use of an incorrectly calculated number of moles of Mg	
			1

alternative approach:

 $(M_{\rm r} \text{ of } \text{SiO}_2 = 28 + (2 \times 16)) = 60 (1)$

48 g Mg reacts with 60 g SiO_2 (1)

allow correct use of an incorrectly calculated Mr of SiO2

(conversion 1.2 kg =) 1200 (g) (1)

$$48 \times \frac{1200}{60}$$
 (g Mg reacts with 1200 g SiO₂) (1)

allow correct use of an incorrectly calculated mass of Mg and / or incorrectly converted or unconverted mass of SiO₂

(f)

allow any combination of x, \bullet , o, e⁽⁻⁾ for electrons

(volume of oxygen for 30 cm³ Si₂H₆ = 3.5×30) = 105 (cm³) 1 (volume of excess oxygen = 150 - 105) = 45 (cm³) allow correct use of an incorrectly calculated volume of oxygen for $30 \text{ cm}^3 \text{ Si}_2 H_6$ 1 (volume of water (vapour) = 3×30) = 90 (cm³) 1 (volume of gases = 45 + 90) = 135 (cm³) allow correct use of incorrectly calculated volumes of excess oxygen and / or water vapour 1 allowed alternative approach: (moles $S_2H_6 = \frac{0.03}{24}$) 0.00125 (1) (moles water vapour formed = 3×0.00125 =) 0.00375 and (moles oxygen used = $3.5 \times 0.00125 = 0.004375$ (1) allow correct use of an incorrectly calculated number of moles of

 Si_2H_6

www.accesstuition.com

1

		(moles excess oxygen = $\frac{0.15}{24}$ - 0.004375 =) 0.001875 (1)	
		allow correct use of an incorrectly calculated number of moles of oxygen used	
		(volume of gases = 24 × (0.00375 + 0.001875) = 0.135 dm ³ =) 135 (cm ³) (1)	
		allow correct use of an incorrectly calculated number of moles of excess oxygen and / or moles of water vapour formed	
			[15]
2	(a)	potassium chloride	
2.		allow KCI	
			1
	(b)	$H^+ + OH^- \rightarrow H_2O$	
		ignore state symbols	
			1
	(c)	copper carbonate and copper oxide only	
			1
	(d)	(Step 2) to speed up the reaction	
			1
		(Step 5) to make sure all the (hydrochloric) acid reacts	
			1
		(Step 6) to remove the excess magnesium oxide	
		ignore to remove impurities	
			1
	(e)	using a (boiling) water bath	
		or using an electric heater	
			1
	(f)	$(malos \ \Gamma_2 = \frac{14}{3}) \ 0.25 \ (mal)$	
	(f)	(moles Fe = $\frac{14}{56}$ =) 0.25 (mol)	1
		2	1
		(moles $Cl_2 = \frac{3}{2}_2 \times 0.25 =$) 0.375 (mol)	
		allow correct use of an incorrectly calculated number of	
		moles of Fe	1
		(volume $Cl_2 = 24 \times 0.375$) = 9.0 (dm ³)	
		allow correct use of an incorrectly calculated number of moles of Cl_2	
		- -	1
			[10]

3.	(a)	mixture has a lower melting point (than aluminium oxide) allow cryolite lowers melting point (of aluminium oxide) ignore boiling point	
		do not accept cryolite is a catalyst	1
		(so) less energy needed ignore cost	
			1
	(b)	aluminium ions gain electrons	1
	(c)	$2 O^{2-} \rightarrow O_2 + 4 e^{-}$ allow multiples allow 1 mark for an unbalanced equation containing correct species	
			2
	(d)	the electrode reacts with oxygen	1
		the electrode is carbon / graphite	1
		 (so) carbon dioxide is produced allow (so) the electrode / carbon / graphite is used up allow (so) the electrode / carbon / graphite is burned away ignore (so) the electrode / carbon / graphite is worn away ignore (so) the electrode / carbon / graphite is corroded 	
			1

(e)

(f)

$$(M, \text{ of } Al_2O_3 =) 102$$

$$\left(\frac{200000}{102} =\right) 19608 \text{ (mol } Al_2O_3)$$
allow correct calculation using incorrectly calculated value of M_r of Al_2O_3

$$\left(19608 \times \frac{3}{2} =\right) 29412 \text{ (mol } O_2)$$
allow correct calculation using incorrectly calculated value of moles of Al_2O_3

$$\left(\frac{29412 \times 32}{1000} =\right) 941 \text{ (kg)}$$
allow 941.1764706 (kg) correctly rounded to at least 2 significant figures
allow correct answer using incorrectly calculated value of moles of O_2
alternative approach:
$$\left(2 M_r \text{ of } Al_2O_3 = \right) 204 \text{ (1)}$$
204 (kg of Al_2O_3 gives)
$$\frac{2000}{204} \times 96 \text{ (kg of } O_2)$$
or
$$\frac{20000000}{204} \times 96 \text{ (kg of } O_2) \text{ (1)}$$

$$= 941 \text{ (kg) (1)}$$
hydrogen (gas) would be produced (instead of sodium)
(because) sodium is more reactive than hydrogen

1

1

1

1

1

$$\left(\frac{150\ 000}{71}\right)$$
 2113 (mol of Cl₂)

or

(a)

4.

(volume of 1 g of $Cl_2 = \frac{24}{71} =$) 0.34 (dm³)

 $\left(\frac{150\ 000}{71} \times 24\right) = 50700\ (dm^3)$

allow 50704.22535 (dm³) correctly rounded to at least 2 significant figures allow correct calculation using their calculated number of moles and/or calculated volume of 1 g

(delivery) tube sticks into the acid

the acid would go into the water **or** the acid would leave the flask or go up the delivery tube

ignore no gas collected

- (b) any **one** from:
 - bung not put in firmly / properly
 - gas lost before bung put in
 - leak from tube

(c) all of the acid has reacted

(d) take more readings in range 0.34 g to 0.54 g

take more readings is insufficient ignore repeat

(e) <u>95</u> 24000

0.00396

or

 3.96×10^{-3}

1

[16]

1

1

1

1

1

1

1

1

(f) use a pipette / burette to measure the acid

(-)		1
	because it is more accurate volume than a measuring cylinder	
	or greater precision than a measuring cylinder	
	or	
	use a gas syringe to collect the gas	
	so it will not dissolve in water	
	or	
	use a flask with a divider	
	accept description of tube suspended inside flask	
	so no gas escapes when bung removed	
		1
(g)	they should be collected because carbon dioxide is left in flask at end	
		1
	and it has the same volume as the air collected / displaced	
		1
		[11]