

GCSE Chemistry

History of the Atom

Mark Scheme

Time available: 40 minutes Marks available: 40 marks

www.accesstuition.com

Mark schemes

1	(a)	electron		
			1	
	(b)	plum pudding	1	
	(c)	alpha		
	(-1)	Daha	1	
	(a)	Bonr	1	
	(e)	protons		
			1	
		neutrons	1	
		protons (and) electrons		
		either order	1	
	(f)	a sports arena of radius 100 m		
			1	[8]
	(-)			r.,1
2.	(a)	 mostly empty space 		
		allow the plum pudding model has no empty space		
		allow the plum pudding model is solid		
		the positive charge is (all) in the nucleus		
		allow in the plum pudding model the atom is a ball of		
		positive charge (with embedded electrons)		
		do not accept reference to protons		
		the mass is concentrated in the nucleus		
		allow in the plum pudding model the mass is spread out		
		ao not accept reference to neutrons		
		the electrons and the nucleus are separate		
		allow in the plum pudding model the electrons are embedded		
		allow in the nuclear model the electrons are in orbits		
			3	

	(b)	electrons of	orbit the nucleus				
			do not accept re	ference to	o protons / neutrons		
			allow electrons a	are in enel	rgy levels around the nucleus		
			or	. , ,			
			allow electrons a	are in shel	is around the nucleus	1	
						1	
		electrons a	are at specific dista	ances fror	n the nucleus		
						1	
	(c)	atomic nur	nber is the numbe	r of protor	าร		
	()			·		1	
		(and) prote	ons were not disco	wered uni	il later		
		(and) prote	ignoro oloctrons	/ noutron	s woro not discovorod until		
			later	/ neulion			
						1	
	(d)	oo thoir pr	oportion motobod t	he reat of	the group		
	(u)	so their pro		ine rest of	the group		
			allow converse			1	
							[8]
				_			
3.	(a)	(neutron)	1	0			
			both needed				
			allow (neutron)	1	neutral	1	
						1	
		proton	1	(+1)			
			both needed				
						1	
	(b)	number of	protons plus neuti	rons			
	. ,		allow number of	protons a	nd neutrons		
			ignore protons a	nd neutro	ns unqualified		
			do not accept re	ferences	to mass or relative mass of		
			, protons and / or	neutrons			
						1	
	(c)	(the isotop	es contain) differe	nt numbe	rs of neutrons		
	(-)	(1	

	(d)	most (alpha) particles passed (straight) through (the gold foil)	1	
		(so) the mass of the atom is concentrated in the nucleus / centre or		
		(so) most of the atom is empty space	1	
		some (alpha) particles were deflected / reflected	1	
		(so) the atom has a (positively) charged nucleus / centre if not awarded for MP2 allow (so) the mass of the atom		
		is concentrated in the nucleus / centre.	1	[8]
4.	(a)	В	1	
	(b)	C	1	
	(c)	A	1	
	(d)	sum of protons and neutrons allow number of protons and neutrons	1	
	(e)	between 69.5 and 70.0	1	
	(f)	Chadwick provided the evidence to show the existence of neutrons allow Chadwick discovered neutrons	1	
		(this was necessary because) isotopes have the same number of protons allow (this was necessary because) isotopes have the same atomic number		
		or (this was necessary because) isotopes are atoms of the same element ignore isotopes have the same number of electrons	1	
		but with different numbers of neutrons allow but with different mass (numbers)	1	[8]
5.	(a)	mass number allow the number of protons + neutrons	1	[o]
			1	

(b) 6.02×10^{23}

(c) Level 2 (3-4 marks):

Scientifically relevant features are identified; the ways in which they are similar / different is made clear.

Level 1 (1-2 marks):

Relevant features are identified and differences noted.

Level 0

No relevant content.

Indicative content

similarities

- both have positive charges
- both have (negative) electrons
- neither has neutrons

differences

plum pudding model	nuclear model
ball of positive charge (spread throughout)	positive charge concentrated at the centre
electrons spread throughout (embedded in the ball of positive charge)	electrons outside the nucleus
no empty space in the atom	most of the atom is empty space
mass spread throughout	mass concentrated at the centre

(d)
$$\frac{(24 \times 78.6) + (25 \times 0.1) + (26 \times 11.3)}{100}$$

100

or (24 × 0.786) + (25 × 0.101) + (26 × 0.113)

= 24.3

an answer of 24.3 scores 2 marks

1

4

1

1

[8]