

GCSE Chemistry

Relative Formula Mass

Mark Scheme

Time available: 51 minutes Marks available: 48 marks

Mark schemes

1. (a) C

1
(b) D
(c) $4 /$ four
(d) very hard
(e) $\mathrm{C}_{2} \mathrm{H}_{6}$
(f) H^{+}
(g) $\quad\left(M_{r}=\right)(1 \times 2)+12+(16 \times 3)$ allow $\left(M_{r}\right)=2+12+48$
$=62$
2. (a) any one from:

- more vigorous bubbling (for rubidium)
- bigger / brighter flame (for rubidium)
allow converse statements for potassium allow (rubidium) catches fire more quickly allow (rubidium) moves around more quickly allow (rubidium) explodes allow (rubidium) disappears more quickly allow (rubidium) melts more quickly
(b) (rubidium's) outer shell / electron is further from the nucleus
allow the (rubidium) atom is larger
allow (rubidium) has more shells
(so) there is less (electrostatic) attraction between the nucleus and the outer electron (in rubidium)
allow (so) there is more shielding between the outer electron and the nucleus (in rubidium)
(so) the outer electron (in rubidium) is more easily lost allow (so) less energy is needed to remove the (outer) electron (in rubidium)
allow energy level for shell throughout
allow converse argument in terms of potassium
(c) $2 \mathrm{Rb}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{RbOH}+\mathrm{H}_{2}$
ignore state symbols
allow multiples
allow 1 mark for H_{2}
allow 1 mark for RbOH
(d) the noble gases have boiling points that increase going down the group
(e) $\quad($ relative atomic mass $=) \frac{(90.48 \times 20)+(0.27 \times 21)+(9.25 \times 22)}{100}$
allow (relative atomic mass $=$) $\frac{1809.6+5.67+203.5}{100}$
allow (relative atomic mass $=$) $18.096+0.0567+2.035$
$=20.1877$
$=20.2$
allow an answer correctly rounded to 3 significant figures from an incorrect calculation which uses all of the values in the table ignore units

3. (a) $\left(3 \times M_{r} \mathrm{H}_{2} \mathrm{O}=3 \times(2+16)=54\right.$
($A_{\mathrm{r}} \mathbf{R}=150-54=$) 96
ignore units
alternative approach:
($M_{\mathrm{r}} \mathbf{R O}_{3}=150-6=$) 144 (1)
$\left(A_{\mathrm{r}} \mathbf{R}=144-(3 \times 16)=\right) 96(1)$
ignore units
(b) ($\mathbf{R}=$) molybdenum / Mo allow ecf from question (a)
(c) (total M_{r} of reactants) $=163$
(\% atom economy $=) \frac{119}{163}(\times 100)$
allow correct use of an incorrectly calculated value of total M_{r}
$=73(\%)$
allow 73.00613 (\%) correctly rounded to at least 2 significant figures
(d) Level 2: Some logically linked reasons are given. There may also be a simple judgement.

Level 1: Relevant points are made. They are not logically linked.

No relevant content

Indicative content

- carbon and iron are the cheapest reactants
- hydrogen is the most expensive reactant
- separating solid products is expensive
- separating solid products is time consuming
- in method 1, tungsten needs to be separated from tungsten carbide
- in method 1, some tungsten is lost as tungsten carbide
- in method 1 , the carbon dioxide produced will escape
- in method 2, the water vapour produced will escape
- in method 2 , no separation of solids is needed
- in method 3, tungsten needs to be separated from iron oxide

4. (a) precipitate / solid formed
allow colour change
(b) total mass before $=257.68 \mathrm{~g}$
total mass after $=257.68 \mathrm{~g}$
so the mass of products equals the mass of the reactants
(c) 0.01 g
(d) $207+(2 \times 14)+(6 \times 16)$
or
$207+2 \times[14+(3 \times 16)]$
$=331$
an answer of 331 scores 2 marks
(e) $\mathrm{CrO}_{4}{ }^{2-}$
(f) carbon dioxide is a gas allow a gas is produced
the gas escapes during the reaction
(so) the mass at the end is less than expected
5. (a) $\mathrm{C}_{5} \mathrm{H}_{12}$
(b) $2: 5$
(c) \mathbf{A}
(d) \mathbf{A}
(e) carbon dioxide
water
(f) propane
(g) $(8 \times 1)+(3 \times 12)$
$=44$
