

GCSE Chemistry

Separating Mixtures

Question Paper

Time available: 45 minutes

Marks available: 38 marks

www.accesstuition.com

1.

This question is about mixtures.

(a) Substances are separated from a mixture using different methods.

Draw **one** line from each substance and mixture to the best method of separation.

Substance and mixture	Method of separation
	Chromatography
Ethanol from ethanol and water	Crystallisation
Salt from sea water	Electrolysis
The different colours in black ink	Filtration
	Fractional distillation

(3)

(b) A student filters a mixture.

Figure 1 shows the apparatus.

Figure 1

Suggest **one** improvement to the apparatus.

(1)

(c) Complete the sentences.

Choose answers from the box.

condense	evaporate	freeze	melt	solidify	
In simple distillation	, the mixture is hea	ted to make the l	liquid	·	
The vapour is then	cooled to make it _		·		
					(2

Figure 2 shows the arrangement of atoms in a pure metal and in a mixture of metals.

Figure 2

Calc	ulate the percentage of metal B atoms in the mixture of metals shown in Figure 2 .	AC	cess vitio
		www.a	ccesstuition.co
	Percentage of metal B atoms =	_ %	(2)
(e)	What is a mixture of metals called?		(-)
	Tick one box.		
	An alloy		
	A compound		
	A molecule		
	A polymer		
(f)	Why is the mixture of metals in Figure 2 harder than the pure metal?		(1)
(1)	Tick one box.		
	The atoms in the mixture are different shapes.		
	The layers in the mixture are distorted.		
	The layers in the mixture slide more easily.		
	The mixture has a giant structure.		

www.accesstuition.com

(1)

(g) A nanoparticle of pure metal **A** is a cube.

What is the volume of the nanoparticle?

Tick **one** box.

20 nm ³	
60 nm ³	

400 nm³

8000 nm³

(1) (Total 11 marks) 2.

Rock salt is a mixture of sand and salt.

Some students separated rock salt.

This is the method used.

- 1. Place the rock salt in a beaker.
- 2. Add 100 cm³ of cold water.
- 3. Allow the sand to settle to the bottom of the beaker.
- 4. Carefully pour the salty water into an evaporating dish.
- 5. Heat the contents of the evaporating dish with a Bunsen burner until salt crystals start to form.

The salty water in step 4 still contained very small grains of sand.	
Suggest one improvement to step 4 to remove all the sand.	
Suggest one safety precaution the students should take in step 5.	

(1)

(d) Another student removed water from salty water using the apparatus in the figure below.

Wha	at is the reading	on the thern	nometer du	ring this prod	cess?		
						°C	

3.

Chromatography can be used to separate components of a mixture.

(a) A student used paper chromatography to analyse a black food colouring.

The student placed spots of known food colours, **A**, **B**, **C**, **D** and **E**, and the black food colouring on a sheet of chromatography paper.

The student set up the apparatus as shown in **Diagram 1**.

Diagram 1

Ine student made two errors in setting up the apparatus. Identify the two errors and describe the problem each error would cause.

(4)

(b) A different student set up the apparatus without making any errors.

Diagram 2

(i)	What do the results tell you about the composition of the black food colouring?

(ii) Use Diagram 2 to complete Table 1.

Table 1

	Distance in mm
Distance from start line to solvent front	
Distance moved by food colour C	

(iii) Use your answers in part (b) (ii) to calculate the R_f value for food colour C.

R_f value = _____

(1)

(2)

(2)

(c) **Table 2** gives the results of chromatography experiments that were carried out on some known food colours, using the same solvent as the students.

Table 2

Name of food colour	Distance from start line to solvent front in mm	Distance moved by food colour in mm	R _f value
Ponceau 4R	62	59	0.95
Carmoisine	74	45	0.61
Fast red	67	27	0.40
Erythrosine	58	17	0.29

Two ty	pes of chromatography are gas chromatography and paper chromatography.	
Give o	ne advantage of gas chromatography compared with paper chromatography.	

4.

Colours are used to coat some chocolate sweets.

Some of these colours are given E-numbers.

(a) Use the correct word from the box to complete the sentence.

additive	element	fuel

An E-number is used to identify a permitted food ______

(1)

(b) Chromatography was used to compare three of the colours used to coat the chocolate sweets.

What do these results tell you about these three colours?

(3)

(Total 4 marks)

5.

Ban yellow additives

Quinoline yellow (E104) is suspected of causing hyperactivity, asthma and rashes in children.

(a) A student tested a food to find out if it contained quinoline yellow (E104). The student's results are shown below.

(i) Draw a ring around the correct answer to complete the sentence.

This method of detecting and identifying colours is called

chromatography.
distillation.
electrolysis.

(1)

(ii) Using the student's results, how many different colours are in the food? ____

(1)

(iii) Using the student's results, how can you tell that the food does **not** contain quinoline yellow (E104)?

(1)

Quir	noline yellow (E104) is used in foods such as sweets, drinks and ice cream.	Access
(i)	Give one reason why quinoline yellow (E104) is added to foods.	www.accesstuition.com
(ii)	Suggest what should be done to decide if quinoline yellow (E104) should be	e banned.
		(Total 5 marks)