M1.(a) 1. Release of glucagon;
2. Leads to formation of glucose in liver (cells);

Reject: glucagon breaks down glycogen, or any other biological molecule
3. From non-carbohydrates / amino acids / fatty acids.

Accept: gluconeogenesis / references to glycogen as source of glucose
(b) 1. Mutant mice (mRNA suggests) make a lot of (the) enzyme;

Accept: PCK1 made (for enzyme made)
2. Mutant mice use kidney / intestine (cells) to make glucose;

Accept: use other organ (than liver)
3. Normal mice do this much less / normal mice use liver cells.
(c) 1. Differences significant;

Reject: references to results being significant once
2. Probability of difference being due to chance less than $0.01 / 1 \% / 1$ in 100 / probability of difference not being due to chance more than 0.99 / 99\% / 99 in 100.

Ignore: references to 0.05 / 5\% / 5 in 100

M2.(a) 1. To show the effect of the inhibitor / drug;
2. To show the effect of yoghurt (on its own does not affect blood glucose);
(b) 1. Food is a factor affecting blood glucose / different foods contain different amounts of starch / glucose / sugar / carbohydrate;

Accept converse

2. To keep starch / fibre intake the same / similar;

Accept something in food which affects the inhibitor
(c) 1. Fewer E-S complexes formed;
2. (With inhibitor) less / no starch digested to maltose ;

Require knowledge that maltose comes from starch
3. (So) less / no glucose from maltose;

Require knowledge that glucose comes from maltose
Accept no glucose
4. (So) less absorption of glucose (from gut);

2 max
(d) Suitable reason; with explanation;

Paired responses - do not mix and match
Ignore references to correlation does not prove causation, it could be due to other factors

Examples,

1. Need larger sample / only 30 mice / only 15 mice in each group;

Accept small sample size
2. Might not be representative / anomalies might have a bigger or smaller effect;

Accept mean not reliable

OR

3. Investigation only lasted 20 days;

Experiment was not long enough
4. Can't see what longer term effects are;

OR

5. Fall in blood glucose is small / numbers from graph;
6. Mice with inhibitor still have a large rise in blood glucose / so don't know if differences significant;

Accept differences are due to chance

OR

7. No stats / SDs / SEs;
8. So don't know if differences significant;

OR
9. Blood glucose could continue to fall;
10. which could be harmful;

OR
11. No group without yoghurt;
12. So cannot compare to other groups;

M3.(a) (Formation of glycogen)

1. Glucose concentration in cell / liver falls below that in blood (plasma) which creates / maintains glucose concentration / diffusion gradient;
2. Glucose enters cell / leaves blood by facilitated diffusion / via carrier(protein) / channel (protein);

Not just diffusion
(b) 1. Insulin sensitivity similar to / not (significantly) different from those with diabetes;

No values for non-obese, so comparisons with 'normal' not possible
2. Overlap of SDs;

Accept SE
3. Their sensitivity (to insulin also) improved by GBS;
(c) 1. Sensitivity (to insulin) does increase;

This part of the question concerns spread of data, not overlap of SDs
2. But large SD / large variation (after GBS);

Accept use of figures / use of SD values to make this point. Ignore ref to SE
3. (So) some showing no / little change / get worse;
4. Do not know what sensitivity to insulin is of non-diabetics (who are not obese);

Accept 'normal' as non-diabetic

M4.(a) 1. Glucose oxidase and peroxidase;
Both enzymes required
2. Dye (with colour A);

Reject 'dye with colour B'. Ignore named dyes
(b) 1. Concentration is given as a range (for each colour) / measurement is not precise;
2. Only measures glucose concentration above normal / above 170 (mg $100 \mathrm{~cm}^{-3}$) (in blood);
3. $\quad 170\left(\mathrm{mg} 100 \mathrm{~cm}^{-3}\right)$ is an average figure / concentration for loss to urine varies (between people);
4. Difficult to match colour against chart / colour match is subjective;

M5.1. Diabetics have (blood glucose) concentration greater than $140 \mathrm{mg} \mathrm{cm}^{-3}$ / than her estimate / estimate suggests she is pre-diabetic;
2. Colour change is subjective / blood on test strip masks colour change;
3. Concentration given as a range / estimation is not reliable;
4. May not have fasted;
5. May not have had a drink with 75 g glucose;
6. Only one test carried out;

No mark for valid or not valid

M6. (a) 1. Adenylate cyclase activated / cAMP produced / second messenger produced;
2. Activates enzyme(s) (in cell so) glycogenolysis / gluconeogenesis occurs / glycogenesis inhibited;
2. Neutral: 'glucose produced' as given in the question stem Accept: correct descriptions of these terms
(b) (i) 1. Glucose / sugar in food would affect the results;

1. Accept references to starch / carbohydrate

Or
2. Food / eating would affect blood glucose (level);

Or
3. (Allows time for) blood glucose (level) to return to normal;
3. Neutral: allows time for insulin to act
(ii) Type 2 diabetes is a failure to respond to insulin / still produces insulin / is not insulin-dependent;
(iii) (For) -3 max

A maximum of three marks can be awarded for each side of the argument

1. Avoids injections / pain of injections;
2. Long(er) lasting / permanent / (new) cells will contain / express gene;
Ignore references to methodology e.g. sample size not known
3. Less need to measure blood sugar / avoids the highs and lows in blood sugar;
4. Less restriction on diet;
(Against) - 3 max
5. Rats are different to humans;
6. May have side effects on humans;
7. Accept: virus may be harmful / disrupt genes / cause cancer
8. Long(er) term effects (of treatment) not known / may have caused effects after 8 months;
9. (Substitute) insulin may be rejected by the body;

M7. (a) (i) Eaten;
Containing carbohydrate / sugar;
Glucose absorbed from intestine / into blood;
Long time after insulin injection / needs more insulin / has not taken insulin;

Does not convert glucose to glycogen / glucose not taken up from blood;
(ii) Shows positive correlation / directly proportional;

A range of results for a particular value / values (for different colours) overlap;

Urine test only an arbitrary scale / not directly related to concentration / colour is subjective / few colour values;

Accept description
(b) Glycogen to glucose / glycogenolysis by activating enzymes;

If name incorrect this disqualifies.
Gluconeogenesis;
Allow explanation in terms of glucose from a non-carbohydrate / named non-carbohydrate source.

