M1.(a) 1. Females are (generally) longer / larger / bigger / up to 115(mm) / males are (generally) shorter / smaller / up to 100 (mm);
lgnore: tall
Accept: females have a larger / 90 modal / peak / most common value and males have a smaller / 80 modal / peak / most common value

Accept mean length of females greater / mean length of males shorter
Reject: use of mean in relation to 80 mm or 90 mm
Reject: Most of the females are 90 mm long / most of the males are 80 mm long
2. Females show a greater range / variation / males show a narrower range / variation.

Accept: correct use of figures from the graph: the range of males is 50 to 100 and of females is 50 to 115 / the spread is 50 for males and 65 for females
(b) (i) 2.6 to $2.7=2$ marks;

Incorrect answer but evidence of a numerator of $\mathbf{2 4 1 8 0}$ OR 156×155 or denominator of $9014=1$ mark;
(ii) (Fewer plant species) - no mark

1. (So) few(er) habitats / niches;

Ignore habitat size
Q Neutral: fewer homes
2. (So) lower diversity of insects / fewer insect species / fewer insect types;
Q Neutral: fewer insects
Accept less variety of insects
3. (So) fewer food sources / less variety of food.

Q Neutral: less food
Ignore references to pesticides, farmers' actions, competition between lizards and evolution

M2.(a) 4:
(c) 1. Take more samples and find mean;
2. Method for randomised samples described.

Allow larger area $=1$ mark

M3.(a) Species richness measures only number of (different) species / does not measure number of individuals.
(b) Trees vary in height.
(c) 1. Index for canopy is 3.73;
2. Index for understorey is 3.30 ;
3. Index in canopy is 1.13 times bigger;

If either or both indices incorrect, allow correct calculation from student's values.
(d) 1. For Zaretis itys, difference in distribution is probably due to chance / probability of being due to chance is more than 5%;
2. For all species other than Zaretis itys, difference in distribution is (highly) unlikely to be due to chance;
3. Because $P<0.001$ which is highly significant / is much lower than 5%.

M4.(a) 1. Draw grid over (map of) area;
2. Select squares / coordinates at random.
(b) 1. No emigration / immigration;
2. No losses to predation;
3. Marking does not affect survival;
4. Birth rate and death rate equal;
5. (In this case) all belong to one population.
(c) 1. Only glows brightly with UV, so doesn't make insects more visible;
2. So doesn't affect / increase predation;

OR

1. Glows brightly with UV marking visible;
2. So makes it easy to pick out labelled insects.
(d) 10130 .

Tolerance of ± 1

$$
N=\frac{M \times C}{R}=1 \text { marks }
$$

(e) 1. Scientists removed large numbers of insects (which were not returned) from same area / same population;
2. Affecting ratio of marked to unmarked.

M5.(a) 1. Number of (individuals of) each species;
Accept: 'population' for 'number'
2. Total number of individuals / number of species;

Accept: 'species richness' MP2 allows for other types of diversity index
(b) (i) (Shows) results are due to the herbicide / are not due to another factor / (to) compare the effect of using and not using the herbicide / shows the effect of adding the herbicide;

Neutral: allows a comparison
Neutral: ensures results are due to the independent variable
Reject: 'insecticide'
Accept: 'pesticide'
(ii) 1. (More) weeds killed so more crops / plants survive / higher yield / less competition;
2. High concentrations (of herbicide) harm / damage / kill / are toxic to crops / plants;
Accept: 'pesticide'
Neutral: 'insecticide’
Accept: use of figures (eg 400+)

M6.(a) 1. No interbreeding / gene pools are separate / geographic(al) isolation;

Accept: all marks if answer written in context of producing increased diversity of plants
1 Do not award this mark in context of new species being formed and then not interbreeding
1 Accept reproductive isolation as alternative to no interbreeding
2. Mutation;

2 Accept: genetic variation
3. Different selection pressures / different foods / niches / habitats;

3 Accept: different environment / biotic / abiotic conditions or named condition
3 Neutral: different climates
4. Adapted organisms survive and breed / differential reproductive success;
5. Change / increase in allele frequency / frequencies;

