M1.(a) 1. Sugar-phosphate (backbone) / double stranded / helix so provides strength / stability / protects bases / protects hydrogen bonds; Must be a direct link / obvious to get the mark Neutral: reference to histones
2. Long / large molecule so can store lots of information;
3. Helix / coiled so compact;

Accept: can store in a small amount of space for 'compact'
4. Base sequence allows information to be stored / base sequence codes for amino acids / protein;

Accept: base sequence allows transcription
5. Double stranded so replication can occur semi-conservatively / strands can act as templates / complementary base pairing / A-T and G-C so accurate replication / identical copies can be made;
6. (Weak) hydrogen bonds for replication / unzipping / strand separation / many hydrogen bonds so stable / strong;

Accept: 'H-bonds' for 'hydrogen bonds'
(b) 1. (Mutation) in E produces highest risk / 1.78;
2. (Mutation) in D produces next highest risk / 1.45;
3. (Mutation) in C produces least risk / 1.30;

Must be stated directly and not implied $\boldsymbol{E}>\boldsymbol{D}>\boldsymbol{C}=3$ marks
Accept: values of $0.78,0.45$ and 0.30 for MP1, MP2 and MP3 respectively
If no mark is awarded, a principle mark can be given for the idea that all mutant alleles increase the risk
(c) 180 ;
(d) (Similarities):

1. Same / similar pattern / both decrease, stay the same then increase;
2. Number of cells stays the same for same length of time;

Ignore: wrong days stated

(Differences):

(Per unit volume of blood)
3. Greater / faster decrease in number of healthy cells / more healthy cells killed / healthy cells killed faster;

Accept: converse for cancer cells
Accept: greater percentage decrease in number of cancer
cells / greater proportion of cancer cells killed
4. Greater / faster increase in number of healthy cells / more healthy cells replaced / divide / healthy cells replaced / divide faster;

Accept: converse for cancer cells
For differences, statements made must be comparative
(e) 1. More / too many healthy cells killed;
2. (So) will take time to replace / increase in number;

Neutral: will take time to 'repair'
3. Person may die / have side effects;
(b) (i) Loss of 3 bases / triplet $=2$ marks;;
'Stop codon / code formed' = 1 mark max unless related to the last amino acid

Loss of base(s) = 1 mark;
eg triplet for last amino acid is changed to a stop codon / code $=2$ marks
3 bases / triplet forms an intron $=2$ marks
Accept: descriptions for 'intron' eg non-coding DNA
'Loss of codon' = 2 marks
(ii) 1. Change in tertiary structure / active site; Neutral: change in 3D shape / structure
2. (So) faulty / non-functional protein / enzyme;

Accept: reference to examples of loss of function eg fewer E-S complexes formed

M3.(a) 1. Cell wall not formed / production inhibited;

1. Q Accept: weakened cell wall, but do not accept 'cell wall is broken down'
2. Lower water potential in bacterium;
3. Accept: converse
4. Must be clear that the lower water potential is in the bacterium
5. Water enters and causes lysis / expansion / pressure;

2 max
(b) Human cells lack enzyme (B) / have a different enzyme / produce different fatty acids / use different substrates;

Neutral: 'human cells do not have cell walls' as out of context
(c) 1. Change in base sequence (of DNA / gene) leading to change in amino acid sequence / primary structure (of enzyme);

1. Accept: different amino acids coded for
2. Reject: different amino acids produced
3. Change in hydrogen / ionic / disulphide bonds leading to change in the tertiary structure / active site (of enzyme);
4. Neutral: alters 3D structure / 3D shape
5. Substrate not complementary / cannot bind (to enzyme / active site) / no enzyme-substrate complexes form;

M4.(a) (i) 4;
(ii) 1. Change in amino acid / (sequence of) amino acids / primary structure;

1. Reject $=$ different amino acids are 'formed'
2. Change in hydrogen / ionic / disulphide bonds alters tertiary structure / active site (of enzyme);
3. Alters 3D structure on its own is not enough for this marking point.
4. Substrate not complementary / cannot bind (to enzyme / active site) / no enzyme- substrate complexes form;
(b) 1. Lack of skin pigment / pale / light skin / albino;
5. Lack of coordination / muscles action affected;
(c) Founder effect / colonies split off / migration / interbreeding;

Allow description of interbreeding e.g. reproduction between individuals from different populations

M5. (a) Introns;
(b) Ile Gly Val Ser;
(c) (i) Has no effect / same amino acid (sequence) / same primary structure;

Q Reject same amino acid formed or produced.

Glycine named as same amino acid;
It still codes for glycine $=$ two marks.
(ii) Leu replaces Val / change in amino acid (sequence) / primary structure;

Change in hydrogen / ionic bonds which alters tertiary structure / active site;

Q Different amino acid formed or produced negates first marking point.

Substrate cannot bind / no longer complementary / no enzyme-substrate complexes form;

Active site changed must be clear for third marking point but does not need reference to shape.
(d) (i) Interphase / S / synthesis (phase);
(ii) DNA / gene replication / synthesis occurs / longest stage;

Allow 'genetic information' = DNA.
Allow 'copied' or 'formed' = replication / synthesis

