

Name:

Genetic diversity MS

Class:

Author:		
Date:		
Time:	101	
Marks:	85	
Comments:		

M1. (a)	1.	Chromosome is formed of two chromatids;		
	2.	(Because) DNA replication (has occurred);		
	3.	(Sister) chromatids held together by centromere;	3	
(b)	1.	Chromosomes in homologous pair;		
	2.	One of each into daughter cells / haploid number;	2	
(c)) Separation of (sister) chromatids / division of centromere;			
(d)	1.	Independent segregation (of homologous chromosomes); Accept random assortment		
	2. Crossing over / formation of chiasmata;		2	[8]
M2 .(a)	(i)	Centromere; Accept: if phonetically correct Reject: centriole	1	
	(ii)	1. Holds chromatids together;		
		2. Attaches (chromatids) to spindle;		
		 3. (Allows) chromatids to be separated / move to (opposite) poles / (centromere) divides / splits at metaphase / anaphase; 3. Q Neutral: chromosomes or chromatids split / halved / divided 3. Reject: reference to homologous chromosomes being separated Accept 'chromosomes' instead of 'chromatids' Ignore incorrect names for X 		

1

 (iii) (Homologous chromosomes) carry different alleles; Accept alternative descriptions for 'alleles' eg different forms of a gene / different base sequences Neutral: reference to maternal and paternal chromosomes

(b) (i) (In **Figure 2**)

- Chromatids have separated (during anaphase);
 Q Neutral: split / halved / divided
 Reject: reference to homologous chromosomes being separated or
- Chromatids have not replicated;
 1. & 2. Accept 'chromosomes' instead of 'chromatids' or
- Chromosomes formed from only one chromatid; Accept converse arguments for Figure 1 Ignore references to the cell not dividing as in the question stem Ignore: named phases

1 max

(ii) 1. Three chromosomes; *Ignore shading*

One from each homologous pair;
 Only one mark for three chromosomes shown as pairs of chromatids

2

(iii) Crossing over / alleles exchanged between chromosomes or chromatids / chiasmata formation / genetic recombination;

Accept: description of crossing over eg sections of chromatids break and rejoin Neutral: random fertilisation Reject: reference to sister chromatids **Q** Neutral: genes exchanged Neutral: mutation

- M3. (a) (meiosis) anaphase I; <u>chromosomes</u> are moving apart; chromosomes still double structures;
 - (b) chromosomes in each (homologous) pair twist around each other; chromatids break and rejoin to chromatid on sister chromosome; *(accept points from a suitable diagram)*

- (b) bivalent;
- (c) (i) Ab, aB;
 - (ii) AB, ab;

(d) mutation; different / new allele formed / genes deleted or duplicated / sequence of genes changed (reject genetic information); <u>random</u> fusion of gametes / fertilisation; new combination of alleles; independent assortment (of chromosomes) (accept random); shuffling of maternal and paternal chromosomes / new combination of alleles; (ignore references to stages of meiosis) any 2 × 2 3

2

1

1

2

[5]

M5. (a) (So results) can be compared / so measurement is the same each time / because eye is not perfectly round / uniform; Accept eye opens to different amounts

- (b) (i) 1. Eye (diameter) is smaller and antennae longer;
 - 2. Antennae detecting touch;
 - Data only refers to shrimps / data may not apply to all animals / only in one area;
 The principle here is that candidate has recognised that both features confirm suggestion. Exact wording does not matter.

2 max

- (ii) 1. Standard deviation gives a measure of spread / variation;
 - More standard deviations overlap, the less likely it is that differences are real / significant / the more likely they are caused by chance;
 Do not accept range Accept converse.
 Although we are looking for the idea of significance, we cannot require this term.

2

(c) (i) Qualitative statement about

difference in size /

difference in variation /

overlap in size;

Quantitative statement about

difference in size /

difference in variation /

overlap in size;

Supported by relevant two sets of figures from graph;;

Note simplistic answer involving a quantitative statement gains 1 mark. More specific answer involving quantitative information gains 2 marks. (ii) (No) for same body length, antenna are longer / antenna are shorter / some with longer body have short antennae / some with shorter body length have longer antennae;

OR

- (Yes) positive correlation in open / in cave; Habitat not critical as a term. Must refer to idea of same habitat Accept description
- (d) More alleles of each gene / shrimps in open have all the alleles; Candidates are required to use the information from the table. Must therefore refer to alleles.
- (e) 1. A small number of shrimps were / went into the cave;
 - 2. All / high proportion of shrimps had allele L;
 - 3. Cave population descended from these / these reproduce;

1

1

- (f) (i) 1. Cross shrimps from two sites / watch courtship;
 - 2. Breed young together / observe mating;
 - Allow 1 mark for any method of improving quality of results e.g. carry out reciprocal crosses / large number of crosses / isolate beforehand;
 Other valid equivalent suggestions should be accepted.
 - (ii) If same species the shrimps would breed, producing fertile young / courtship species specific;

Accept any form of evidence – mating / laying eggs / giving birth to young.

[15]

M6.		(a)	(i)	22;	_		
		(ii)	1.	Odd number of chromosomes / 33 chromosomes (in leaf cell);	1		
		(")	2.	Chromosomes cannot pair / cannot undergo meiosis / would result in half chromosomes / cannot form haploid cells;	2		
	(b)	(i) (ii)		at growth / produces crop fast / produces large crop; Do not insist on relative statement. Accept similar terms for fast. E.g. "better" growth Do not accept unqualified references to profit. wes less likely to break / higher breaking strength;	1		
	(c)) Low genetic diversity because they are produced by mitosis; Will all have the same DNA / genes / alleles / will be <u>genetically</u> identical / will be clones;					
		OR					
		Low genetic diversity because they are not produced by meiosis;					
		No crossing over / independent segregation / will not be <u>genetically</u> different; Independent segregation is the specification term. Accept other such as random assortment.					
М7.		(a) (ii)	Cro Ran	Continuous variation – range of values / not discrete categories / many egories / no gaps; ssing over / chiasmata; dom segregation / independent assortment; neiosis I and meiosis II; n	/ 1 nax 2		
	(b)	b) Range influenced by single 'outlier' (accept anomaly) /					

converse for S.D.;

[7]

S.D. shows dispersion / spread about mean / range only shows highest and lowest values / extremes; Or

S.D. allows statistical use;

Tests whether or not differences are significant;

max 2

M8.

- (a) 1. Chromosomes shorten / thicken / condense;
 - Chromosomes associate in homologous / (described) pairs / formation of bivalents / tetrads;
 - 3. Crossing-over / chiasma formation;
 - 4. Join to spindle (fibres) / moved by spindle;(*)
 - 5. (At) equator / middle of cell;(*)
 - 6. (join via) centromere / kinetochore;(*)
 - (Homologous) chromosomes move to opposite poles / chromosomes separate / move apart; (ALLOW 'are pulled apart')
 - 8. (Pairs of) chromatids separated in 2nd division;
 - (*) OR " independent assortment" unqualified = 1 mark

max 6

- (b) 1. Crossing-over; [*IGNORE* any wrong ref. to timing]
 - Independent / random assortment / orientation / segregation of (homologous) chromosomes in meiosis I;
 - Independent / random assortment / orientation / segregation of chromatids in meiosis II;
 - + Any three from:
 - 4. Different adaptations / some better adapted;
 - 5. Some survive / example described;
 - 6. To reproduce;
 - 7. Pass on gene / allele;

8. Allows for changing environment / different environment / example described;

max 5

1

(c) (i) 21;

(ii) 1. *T. aestivum* has 2 copies of each type of chromosome / is diploid;
2. *T. aestivum*'s chromosomes can form bivalents / can assort in meiosis / can produce haploid gametes;

3. *T. aestivum's* gametes receive a copy of <u>every</u> chromosome / receive <u>all</u> the genetic information;

ACCEPT converse argument for hybrid plants

M9.(a) 1. Reduction in ATP production by aerobic respiration;

- 2. Less force generated because fewer actin and myosin interactions in muscle;
- 3. Fatigue caused by lactate from anaerobic respiration;

(b) Couple A,

- 1. Mutation in mitochondrial DNA / DNA of mitochondrion affected;
- 2. All children got affected mitochondria from mother;
- 3. (Probably mutation) during formation of mother's ovary / eggs;

Couple **B**,

- 4. Mutation in nuclear gene / DNA in nucleus affected;
- 5. Parents heterozygous;
- 6. Expect 1 in 4 homozygous affected;

3

- (c) 1. Change to tRNA leads to wrong amino acid being incorporated into protein;
 - 2. Tertiary structure (of protein) changed;
 - Protein required for oxidative phosphorylation / the Krebs cycle, so less / no ATP made;

- (d) 1. Mitochondria / aerobic respiration not producing much / any ATP;
 - 2. (With MD) increased use of ATP supplied by increase in anaerobic respiration;
 - 3. More lactate produced and leaves muscle by (facilitated) diffusion;

2. Compare DNA sequence with 'normal' DNA;

[15]