exampro

Exampro A-level Biology (7401/7402)

Genetic diversity MS

Author:

Date:

Time:
101

Marks:
85

Comments:

M1.(a) 1. Chromosome is formed of two chromatids;
2. (Because) DNA replication (has occurred);
3. (Sister) chromatids held together by centromere;
(b) 1. Chromosomes in homologous pair;
2. One of each into daughter cells / haploid number;
(c) Separation of (sister) chromatids / division of centromere;
(d) 1. Independent segregation (of homologous chromosomes);

Accept random assortment
2. Crossing over / formation of chiasmata;

M2.(a) (i) Centromere;
Accept: if phonetically correct
Reject: centriole
(ii) 1. Holds chromatids together;
2. Attaches (chromatids) to spindle;
3. (Allows) chromatids to be separated / move to (opposite) poles / (centromere) divides / splits at metaphase / anaphase;
3. Q Neutral: chromosomes or chromatids split / halved / divided
3. Reject: reference to homologous chromosomes being separated
Accept 'chromosomes' instead of 'chromatids'
Ignore incorrect names for \boldsymbol{X}
(iii) (Homologous chromosomes) carry different alleles; Accept alternative descriptions for 'alleles' eg different forms of a gene / different base sequences Neutral: reference to maternal and paternal chromosomes
(b) (i) (In Figure 2)

1. Chromatids have separated (during anaphase);
2. Q Neutral: split / halved / divided
3. Reject: reference to homologous chromosomes being separated
or
4. Chromatids have not replicated;
5. \& 2. Accept 'chromosomes' instead of 'chromatids'
or
6. Chromosomes formed from only one chromatid;

Accept converse arguments for Figure 1
Ignore references to the cell not dividing as in the question stem

Ignore: named phases
(ii) 1. Three chromosomes; Ignore shading
2. One from each homologous pair;

Only one mark for three chromosomes shown as pairs of chromatids
(iii) Crossing over / alleles exchanged between chromosomes or chromatids / chiasmata formation / genetic recombination;

Accept: description of crossing over eg sections of chromatids break and rejoin
Neutral: random fertilisation
Reject: reference to sister chromatids
Q Neutral: genes exchanged
Neutral: mutation

M3. (a) (meiosis) anaphase I ; chromosomes are moving apart; chromosomes still double structures;
(b) chromosomes in each (homologous) pair twist around each other; chromatids break and rejoin to chromatid on sister chromosome;
(accept points from a suitable diagram)

M4.

(b) bivalent;
(c) (i) Ab, aB;
(ii) AB, ab;
(d) mutation;
different / new allele formed / genes deleted or duplicated / sequence of genes changed (reject genetic information);
random fusion of gametes / fertilisation;
new combination of alleles;
independent assortment (of chromosomes) (accept random);
shuffling of maternal and paternal chromosomes / new combination of alleles;
(ignore references to stages of meiosis)
any 2×2

M5. (a) (So results) can be compared / so measurement is the same each time / because eye is not perfectly round / uniform;

Accept eye opens to different amounts
(b) (i) 1. Eye (diameter) is smaller and antennae longer;
2. Antennae detecting touch;
3. Data only refers to shrimps / data may not apply to all animals / only in one area;
The principle here is that candidate has recognised that both features confirm suggestion. Exact wording does not matter.
(ii) 1. Standard deviation gives a measure of spread / variation;
2. More standard deviations overlap, the less likely it is that differences are real / significant / the more likely they are caused by chance;
Do not accept range
Accept converse.
Although we are looking for the idea of significance, we cannot require this term.
(c) (i) Qualitative statement about
difference in size /
difference in variation /
overlap in size;
Quantitative statement about
difference in size /
difference in variation /
overlap in size;
Supported by relevant two sets of figures from graph;;
Note simplistic answer involving a quantitative statement gains 1 mark.
More specific answer involving quantitative information gains 2 marks.
(ii) (No) for same body length, antenna are longer / antenna are shorter / some with longer body have short antennae / some with shorter body length have longer antennae;

OR

(Yes) positive correlation in open / in cave;
Habitat not critical as a term.
Must refer to idea of same habitat
Accept description
(d) More alleles of each gene / shrimps in open have all the alleles; Candidates are required to use the information from the table. Must therefore refer to alleles.
(e) 1. A small number of shrimps were / went into the cave;
2. All / high proportion of shrimps had allele L ;
3. Cave population descended from these / these reproduce;
(f) (i) 1. Cross shrimps from two sites / watch courtship;
2. Breed young together / observe mating;
3. Allow 1 mark for any method of improving quality of results e.g. carry out reciprocal crosses / large number of crosses / isolate beforehand;
Other valid equivalent suggestions should be accepted.
(ii) If same species the shrimps would breed, producing fertile young / courtship species specific;

Accept any form of evidence - mating / laying eggs / giving birth to young.

M6.
(a) (i) 22 ;
(ii) 1. Odd number of chromosomes / 33 chromosomes (in leaf cell);
2. Chromosomes cannot pair / cannot undergo meiosis / would result in half chromosomes / cannot form haploid cells;
(b) (i) Fast growth / produces crop fast / produces large crop;

Do not insist on relative statement.
Accept similar terms for fast. E.g. "better" growth
Do not accept unqualified references to profit.
(ii) Leaves less likely to break / higher breaking strength;
(c) Low genetic diversity because they are produced by mitosis;

Will all have the same DNA / genes / alleles / will be genetically identical / will be clones;

OR

Low genetic diversity because they are not produced by meiosis;
No crossing over / independent segregation / will not be genetically different; Independent segregation is the specification term. Accept other such as random assortment.

M7. (a) (i) Continuous variation - range of values / not discrete categories / many categories / no gaps;
(ii) Crossing over / chiasmata; Random segregation / independent assortment; In meiosis I and meiosis II;
(b) Range influenced by single 'outlier' (accept anomaly) / converse for S.D.;

```
S.D. shows dispersion / spread about mean / range only shows highest
and lowest values / extremes;
Or
S.D. allows statistical use;
Tests whether or not differences are significant;
```

max 2

M8. (a) 1. Chromosomes shorten / thicken / condense;
2. Chromosomes associate in homologous / (described) pairs / formation of bivalents / tetrads;
3. Crossing-over / chiasma formation;
4. Join to spindle (fibres) / moved by spindle;(*)
5. (At) equator / middle of cell; (*)
6. (join via) centromere / kinetochore;(*)
7. (Homologous) chromosomes move to opposite poles / chromosomes separate / move apart; (ALLOW 'are pulled apart')
8. (Pairs of) chromatids separated in $2^{\text {nd }}$ division;
(*) OR "independent assortment" unqualified = 1 mark
(b) 1. Crossing-over; [IGNORE any wrong ref. to timing]
2. Independent / random assortment / orientation / segregation of (homologous) chromosomes in meiosis I;
3. Independent / random assortment / orientation / segregation of chromatids in meiosis II;

+ Any three from:

4. Different adaptations / some better adapted;
5. Some survive / example described;
6. To reproduce;
7. Pass on gene / allele;
8. Allows for changing environment / different environment / example described;
(c) (i) 21 ;
(ii) 1. T. aestivum has 2 copies of each type of chromosome / is diploid;
9. T. aestivum's chromosomes can form bivalents / can assort in meiosis / can produce haploid gametes;
10. T. aestivum's gametes receive a copy of every chromosome / receive all the genetic information;

ACCEPT converse argument for hybrid plants

M9.(a) 1. Reduction in ATP production by aerobic respiration;
2. Less force generated because fewer actin and myosin interactions in muscle;
3. Fatigue caused by lactate from anaerobic respiration;
(b) Couple A,

1. Mutation in mitochondrial DNA / DNA of mitochondrion affected;
2. All children got affected mitochondria from mother;
3. (Probably mutation) during formation of mother's ovary / eggs;

Couple B,
4. Mutation in nuclear gene / DNA in nucleus affected;
5. Parents heterozygous;
6. Expect 1 in 4 homozygous affected;
(c) 1. Change to tRNA leads to wrong amino acid being incorporated into protein;
2. Tertiary structure (of protein) changed;
3. Protein required for oxidative phosphorylation / the Krebs cycle, so less / no ATP made;
(d) 1. Mitochondria / aerobic respiration not producing much / any ATP;
2. (With MD) increased use of ATP supplied by increase in anaerobic respiration;
3. More lactate produced and leaves muscle by (facilitated) diffusion;
(e) 1. Enough DNA using PCR;
2. Compare DNA sequence with 'normal' DNA;

