M1. (a)	1.	Cut (DNA) at same (base) sequence / (recognition) sequence; Accept: cut DNA at same place	
	2.	(So) get (fragments with gene) R / required gene. Accept: 'allele' for 'gene' / same gene	2
(b)	1. 2.	Each has / they have a specific base sequence; That is complementary (to allele r or R). Accept description of 'complementary'	2
(c)	1.	Fragments L from parent rr, because all longer fragments / 195 base pair fragments; Ignore: references to fragments that move further / less, <u>require</u> identification of longer / shorter or 195 / 135 Accept: (homozygous) recessive	
	2.	Fragments N from parent RR, because all shorter fragments / 135 base pair fragments; <i>1 and 2 Accept: A3 for 195 and A4 for 135</i> <i>2. Accept: (homozygous) dominant</i>	
	3.	(M from) offspring heterozygous / Rr / have both 195 and 135 base pair fragments. <i>Accept: have both bands / strips</i> <i>Reject: <u>primer</u> longer / shorter</i>	3
(d)	1. 2.	(Cells in mitosis) chromosomes visible; (So) can see which chromosome DNA probe attached to.	2

- (e) (i) 1. For comparison with resistant flies / other (two) experiments / groups; Ignore: compare results / data / no other factors
 - 2. To see death rate (in non-resistant) / to see effect of insecticide in non-resistant / normal flies.

Accept: 'pesticide' as 'insecticide' Accept to see that insecticide worked / to see effect of enzyme

- (ii) (PM must be involved because)
 - 1. Few resistant flies die (without inhibitor);
 - 2. More inhibited flies die than resistant flies;
 - 3. (PM) inhibited flies die faster (than resistant flies);

(Other factors must be involved because)

- 4. Some resistant flies die;
- 5. But (with inhibitor) still have greater resistance / die slower than non-resistant flies.

Accept: (with inhibitor) die slower than non-resistant flies

4 max

1

M2.(a) Reverse transcriptase;

- (b) 1. Probe (base sequence) complementary (to DNA of allele A / where A is (and) binds by forming base pairs / hydrogen bonds;
 Accept gene A
 - 2. So (only) this DNA labelled / has green dye / gives out (green) light; Accept glows for green light

2

- (c) (i) 1. More probe binding / more cDNA / mRNA / more allele / gene A means more light;
 - 2. DNA (with **A**) doubles each (PCR) cycle;
 - 3. So light (approximately) doubles / curve steepens more and more (each cycle) / curve goes up exponentially / increases even faster;

3

- (ii) (G because)
 - 1. (Heterozygous) only has half the amount of probe for A attaching /

only half the amount of DNA / allele A (to bind to); Accept only one A to bind to

(So,) only produced (about) half the light / glow / intensity (of H) (per cycle of PCR);
 If reference to 'half' for point 1, allow 'less light' in 2.

2

M3.

(a)

(i)

- Negative correlation; Accept: description for 'negative correlation' Neutral: 'correlation' Reject: positive correlation
- 2. Wide range;
- 3. Overlap;
- 4. (Graph suggests that) other factors may be involved (in age of onset);
 2 / 3 Accept the use of figures from the graph
 2 / 3 Can refer to age of onset or number of CAG repeats
 Ignore references to methodology

3 max

- (ii) 1. Age of onset can be high / symptoms appear later in life; Accept: 'gene' for 'allele'
 - 2. (So) individuals have already had children / allele has been passed on;

OR

- 3. Individuals have passed on the allele / already had children;
- 4. Before symptoms occur;

2 max

- (b) (i) 1. Person **K**;
 - (As has) high(est) band / band that travelled a short(est) distance / (er) so has large(st) fragment / number of CAG repeats;
 Must correctly link distance moved and fragment size

		(ii)	Run fragments of known length / CAG repeats (at the same time); Accept: references to a DNA ladder / DNA markers Do not accept DNA sequencing	1
		(iii)	Homozygous / (CAG) fragments are the same length / size / mass; Accept: small fragment has run off gel / travelled further	1
M4.		(a) (ii)	 (i) To cut the DNA; <i>Reject breakdown, cutting out</i> To separate the (pieces of) DNA; 	1
	(b)	(hap	nplimentary base sequence / complementary DNA; binds to both blotypes); el would show up in both; Idea of complimentarity required	2
	(c)	(i) (ii)	Y chromosome inherited / comes from male parents / only found in males; Mitochondria in egg / female gamete / no mitochondria come from sperm / male gamete;	1
	(d)	(i)	Allows comparison; Different (sized) areas covered;	

2

[9]

(ii) Wolves do not eat all of prey animal / do not eat (large) bones / skin;

Inedible parts make up different proportions / wolf eats different proportions;

2

(e) Limited by food / prey; as prey increases so do wolf numbers / positive correlation;

Large range so other factors involved;

2