

# A-Level Biology 

## Carbohydrates

Mark Scheme

Time available: 76 minutes Marks available: 60 marks

1. (a)

| Letter | Statement |
| :---: | :--- |
| B; | is a monomer in an enzyme's active site |
| D; | is a monomer in cellulose |
| C; | is produced during photosynthesis and <br> respiration |
| B; | forms a polymer that gives a positive result <br> with a biuret test |

Must be in correct order
(c) 1. Heat with acid and neutralise;

Accept boil/water bath for heat
Accept named alkali for neutralise
Accept named examples, eg $\mathrm{HCl}, \mathrm{NaHCO}_{3}$
2. Heat with Benedict's (solution);
3. Red precipitate/colour;

Accept other colours eg orange/ brown/green
2. (a)


Accept a box drawn around any OH and H from another OH OR
Accept one box around two OHs
(b) 1. Filter and dry (the precipitate);

Accept: correct reference to evaporation after filtration
2. Find mass/weight;
(c) 1. $A=$ glucose and $B=$ maltose;
2. Because more sugar/precipitate after hydrolysis/maltase action;

Accept 'higher concentration of sugar' for 'more sugar'
Accept 'break down' for hydrolysis
(d) 1. Quantitative

OR
(Colour change is) subjective;
Accept: accurate/precise
2. Standardises (the) method;

1 max
(e) 16.67-17 = 2 marks;
(cumulative percentage error of both measuring vessels)
If incorrect final answer, accept for 1 mark:
$0.167-0.17$ (not a percentage)

$$
\frac{1}{15}+\frac{0.5}{5} \times 100
$$

## OR

evidence of
$\frac{1}{15}+\frac{0.5}{5}$
(correct understanding, but not calculated)
Ignore: $\pm$ (plus or minus) in answer
3. (a) (a monomer is a smaller / repeating) unit / molecule from which larger molecules / polymers are made;

Reject atoms / elements / 'building blocks' for units / molecules Ignore examples
(b) Similarity

1. Both contain galactose / a glycosidic bond;

Ignore references to hydrolysis and / or condensation

## Difference

2. Lactulose contains fructose, whereas lactose contains glucose;

Ignore alpha / beta prefix for glucose
Difference must be stated, not implied
(c) 1. (Lactulose) lowers the water potential of faeces / intestine / contents of the intestine;

Accept $\psi$ for water potential
2. Water retained / enters (due to osmosis) and softens the faeces;

Accept descriptions of soft faeces, eg faeces is less dry / less hard
(d) (-) $84.1(\%) ;$;

Accept (-) 84.15(\%)
Allow 1 mark for
84
OR

$$
\frac{2.82 \times 10^{-7}-4.47 \times 10^{-8}}{2.82 \times 10^{-7}}
$$

OR

$$
\frac{2.37 \times 10^{-7}}{2.82 \times 10^{-7}}
$$

4. (a) 1. Cellulose is made up of $\beta$-glucose (monomers) and glycogen is made up of $\alpha$-glucose (monomers);
5. Cellulose molecule has straight chain and glycogen is branched;
6. Cellulose molecule has straight chain and glycogen is coiled;
7. glycogen has 1,4- and 1,6- glycosidic bonds and cellulose has only 1,4glycosidic bonds;

Ignore ref. to H bonds / microfibrils
(b) Any two from:

1. Insoluble (in water), so doesn't affect water potential;
2. Branched / coiled / ( $\alpha$-)helix, so makes molecule compact;

## OR

Branched / coiled / ( $\alpha$-)helix so can fit many (molecules) in small area;
3. Polymer of ( $\alpha$-)glucose so provides glucose for respiration;
4. Branched / more ends for fast breakdown / enzyme action;
5. Large (molecule), so can't cross the cell membrane

Require feature and explanation for 1 mark

1. Accept $\Psi$ or WP
2. Accept Insoluble so doesn't affect osmosis
3. Do not allow ref to 'doesn't affect water leaving cells
4. Ignore 'surface area'
5. Accept 'branched so glucose readily released'
(c) lodine/potassium iodide;
(d) For correct answer of 40 ( $\mu \mathrm{m}$ ) award 2 marks;

Evidence of division by 500: award 1 mark
Allow tolerance of 0.5 mm i.e. $20 \pm 0.5 \mathrm{~mm}$
(e) 1. Scanning electron (microscope);
2. 3D (image);

Accept SE(M)
2. Ignore any other correct features
5. (a) 1. $\frac{\text { Polysaccharide }}{\mathbf{O R}} \underline{\alpha \text {-glucose; }}$
polymer of $\alpha$-glucose;
2. (Joined by) glycosidic bonds

## OR

Branched structure;
(b) 1. Hydrolysed (to glucose);
2. Glucose used in respiration;

1. Ignore 'Broken down'
2. 'Energy produced' disqualifies mp2
(c) 1. Membrane folded so increased / large surface area;

OR
Membrane has increased / large surface area for (fast) diffusion / facilitated diffusion / active transport / co-transport;
2. Large number of protein channels / carriers (in membrane) for facilitated diffusion;
3. Large number of protein carriers (in membrane) for active transport;
4. Large number of protein (channels / carriers in membrane) for co-transport;

1. Accept 'microvilli to increase surface area'
2. Reject reference to villi.

Note feature and function required for each marking point and reference to large / many / more.
List rule applies.
(d) $3.3 \times 10^{-5}$ OR $3.28 \times 10^{-5}$ OR $3.281 \times 10^{-5}$;

1 mark for
Evidence of 128 (cells)
Correct numerical calculation but not in standard form gains 1 mark (0.00003281 OR 0.0000328 OR 0.000033);

Accept any number of significant figures as long as rounding correct ( $3.28125 \times 10^{-5}$ scores 2 marks)
6. (a) 1. Starch formed from $\alpha$-glucose but cellulose formed from $\beta$-glucose;
2. Position of hydrogen and hydroxyl groups on carbon atom 1 inverted.
(b) 1. Insoluble;
2. Don't affect water potential; OR
3. Helical;

Accept form spirals
4. Compact;

OR
5. Large molecule;
6. Cannot leave cell.
(c) 1. Long and straight chains;
2. Become linked together by many hydrogen bonds to form fibrils;
3. Provide strength (to cell wall).
7. (a) Isomer(ism);
(b) Higher absorbance (has more sugar)

OR
Lower transmission (has more sugar);
Accept a description of absorbance or transmission
(c) 1. Benedict's (solution) volume;
2. Benedict's (solution) concentration;
3. (Fruit) juice volume;
4. Water bath/water temperature;
5. Duration of heating (in water bath);
(d) Correct answer for 2 marks, 12;;

Accept for 1 mark,
30 (correct mass of apple core)
OR
150 (correct mass of apple flesh)
OR
$0.08 / \frac{8}{100} \times$ incorrect mass calculated using the ratio
OR
14.4 (correct mass in whole apple)
(e) 1. Starch hydrolysis (to maltose);
2. Maltose is soluble, but starch is insoluble; $2(2 \times \mathrm{AO} 2)$

Accept glucose for maltose
Reject sugar
8. (a) glucose; (reject alpha glucose)
(b) hydrolysis;
(accept catabolic)
(c) (long) straight / unbranched chains; (idea of more than 1) chains lie side by side / form (micro)fibrils; idea of $\underline{H}$ bonds holding chains together;

