

A-Level Biology

Cell Transport

Mark Scheme

Time available: 66 minutes Marks available: 52 marks

www.accesstuition.com

Mark schemes

(a)

1.

 (ATP to ADP + Pi) Releases energy; Reject 'produces/makes/creates energy'.

2. (energy) allows ions to be moved against a concentration gradient

OR

(energy) allows active transport of ions;

For 'ions' accept Na + or K⁺. Do not accept if this movement is of glucose not ions.

(b) 1. (Maintains/generates) a concentration/diffusion gradient for Na⁺ (from ileum into cell);

Accept '(Maintains/generates) a lower concentration of Na⁺ inside the cell compared with outside the cell'.

2. Na⁺ moving (in) by facilitated diffusion, brings glucose with it

OR

Na⁺ moving (in) by <u>co-transport</u>, brings glucose with it; Accept 'co-transporter' for 'co-transport'. 2

- (c) 1. Folded membrane/microvilli so large surface area (for absorption); Reject references to 'villi'. Accept 'brush border' for 'microvilli'.
 - 2. Large number of co-transport/carrier/channel proteins **so** fast rate (of absorption)

OR

Large number of co-transport/carrier proteins for active transport

OR

Large number of co-transport/carrier/channel proteins for facilitated diffusion;

3. Large number of mitochondria **so** make (more) ATP (by respiration)

OR

Large number of mitochondria for aerobic respiration

OR

Large number of mitochondria to release energy for active transport;

 Membrane-bound (digestive) enzymes so maintains concentration gradient (for fast absorption);

Accept named examples of digestive enzymes.

2

- (d) 1. Phospholipids drawn with head and two tails;
 - Correctly positioned as a bilayer on either side of SGLT1;
 Some of every 'head' must extend into the hydrophilic region and some of every 'tail' must extend into the hydrophobic region.
 Reject phospholipids drawn within the protein.
- (e) 1. One amine/NH₂ group joins to a carboxyl/COOH group to form a <u>peptide</u> bond; Accept on diagram, for example (at least) two amino acids joining by a correctly drawn peptide bond (MP1) with NH₂ at one end and COOH at the other (MP2). Ignore incorrect names of NH₂ and COOH groups.
 - (So in chain) there is a free amine/NH₂ group at one end **and** a free carboxyl/COOH group at the other

OR

Each amino acid is orientated in the same direction in the chain; Allow ECF for incorrect naming of groups.

[10]

2

(a) 69.3 cm^3 solvent, 29.7 cm³ water, 1.0 cm³ acid (box 2);

1

(b) 1. Temperature;

2.

- 2. Agitation/mixing/stirring;
- 3. Source/age/type of blueberries;
- 4. Crushing of the blueberries;
- 5. Rinsing of the blueberries prior to mixing;
- 6. Concentration of ethanol/acid; Do not accept pH. Accept 'Filtering method'.

2 max

(c) 1. Higher absorbance indicates more anthocyanin

OR

Higher absorbance indicates more membrane damage/permeability

OR

(G not zero because) some anthocyanin released when blueberries are crushed

OR

- (G not zero because) some membrane damage when blueberries are crushed;
 For 'anthocyanin' accept 'pigment'.
 A direct comparative statement is not needed, can be taken from the answer as a whole.
 Accept 'most' for 'more'.
- 2. More membrane damage/permeability results in more anthocyanin release Accept 'most' for 'more'.
- 3. (E and F greater than water because) phospholipids dissolve in ethanol;
- (E greater than F because) acid denatures membrane proteins; Accept description of denaturation in terms of change in tertiary structure or breaking of hydrogen/ionic bonds.

4

(d) 1. Use known concentration of blueberry juice/extract

OR

Use known concentration of anthocyanin/pigment (solution)

OR

(a)

3.

Use known concentration of (extraction) solvent to be added to blueberries;

2. Prepare dilution series;

Accept descriptions and 'serial dilutions' Accept dilution series in terms of pigment or solvent.

3. Compare (results) with colour standards to give score/value/concentration; For 'colour standards' accept 'dilutions'.

2

- (Movement) down a gradient / from high concentration to low concentration; *Ignore along / across gradient Reject movement from gradient to gradient*
 - Passive / not active processes;
 OR
 Do not use energy from respiration / from ATP / from metabolism;
 OR
 Use energy from the solution;
 Reject do not use energy unqualified
- (b) 1. Movement through carrier proteins;
 OR
 Facilitated diffusion;
 Between A and B
 Accept MP1 in either section

Ignore co-transport / active transport Accept channel proteins

Rate of uptake proportional to (external) concentration;
 Between C and D

Accept description of proportional

3. All channel / carrier proteins in use / saturated / limiting;

Accept used up Accept transport proteins

- (C) 1. Rate of uptake is proportional / does not level off (so diffusion occurring); Accept as one increases the other increases
 - 2. (Lipid-soluble molecules) diffuse through / are soluble in phospholipid (bilayer);
 - Automarker Droplets increase surface areas (for lipase / enzyme action); (So) faster hydrolysis / digestion (of triglycerides / lipids); Micelles carry fatty acids and glycerol / monoglycerides to / through membrane / to (intestinal epithelial) cell;
 - 1. Context is important
 - 1. Reject micelles increase surface area
 - 2. Ignore 'breakdown'
 - З. Ignore 'small enough'
 - З. Accept description of membrane
 - З. Reject any movement through membrane proteins
- Golgi (apparatus); (C) 1.
 - 2. Modifies / processes triglycerides;
 - 3. Combines triglycerides with proteins;
 - 4. Packaged for release / exocytosis
 - OR

Diffusion

1. 2.

3.

(a)

(b)

4.

5.

Forms vesicles;

Ignore 'processes and packages' unqualified

- 2. Reject synthesises triglycerides
- З. Accept 'forms / are lipoproteins'
- (a) 1. Co-transport;
 - 2. Uses (hydrolysis of) ATP;
 - 3. Sodium ion and proton bind to the protein;
 - 4. Protein changes shape (to move sodium ion and / or proton across the membrane);
 - З. Accept 'Na⁺ and H⁺ bind to protein' but do not allow incorrect chemical symbols

3 max

2

1

3

4

[8]

[7]

- (b) 1. Tenapanor / (Group)B / drug causes a <u>significant</u> increase; OR
 - There is a <u>significant</u> difference with Tenapanor / drug / between **A** and **B**;
 - 2. There is a less than 0.05 probability that the difference is due to chance;
 - 3. (More salt in gut) reduces water potential in gut (contents);
 - 4. (so) less water absorbed out of gut (contents) by osmosis

OR

Less water absorbed into cells by osmosis

OR

Water moves into the gut (contents) by osmosis.

OR

(so) water moves out of cells by osmosis.

- 1. and 2. Reject references to 'results' being significant / due to chance once only.
- 2. Do not credit suggestion that probability is 0.05% or 5.
- 2. Accept 'There is a greater than 0.95 / 95% probability that any difference between observed and expected is **not** due to chance'
- (c) 1. (Higher salt) results in low<u>er</u> water potential of tissue fluid;
 - 2. (So) less <u>water</u> returns to capillary by osmosis (at venule end);

OR

6.

- 3. (Higher salt) results in higher blood pressure / volume;
- 4. (So) more fluid pushed / forced out (at arteriole end) of capillary;

For 'salt' accept 'sodium ions'.

Do not allow mix and match of points from different alternative pairs

3. Accept higher hydrostatic pressure.

[9]

2

4

1

4

 (a) 1. and 2. Accept for 2 marks correct names of three components adenine, ribose/pentose, <u>three</u> phosphates;;

> Accept for 1 mark, correct name of two components Accept for 1 mark, ADP **and** phosphate/Pi Ignore adenosine Accept suitably labelled diagram

- 3. Condensation (reaction); Ignore phosphodiester
- 4. ATP synthase;

Reject ATPase

(b) Correct answer for 1 mark = 57/57.1;

- (c) 1. (Amino acid uptake by) active transport; Accept for 'transport', process
 - 2. Cyanide reduces/stops amino acid uptake;
 - 3. ATP production stops on <u>membranes</u>

OR

Enzymes not working on membranes;

4. ATP production continues in cytoplasm

OR

Enzymes active in cytoplasm;

3 max