

A-Level Biology

DNA Structure

Mark Scheme

Time available: 65 minutes Marks available: 55 marks

Mark schemes

1. (a) 1. Condensation (reaction)/loss of water;
2. (Between) phosphate and deoxyribose;
3. (Catalysed by) DNA polymerase;

Reject if DNA polymerase joins AT/GC OR complementary nucleotides/bases OR forms hydrogen bonds

2 max
(b) Correct answer for 2 marks $=70$;;

Accept for 1 mark,
$\mathrm{A}=42$ and $\mathrm{T}=42$
OR
420 (total bases in gene)
OR
210 (bases in template strand)
2. (a) In chloroplasts

Must be comparative statements.
Accept alternatives in context of nuclear DNA

1. DNA shorter;

Accept smaller
2. Fewer genes;
3. DNA circular not linear;

Accept DNA in a loop not linear
Accept no chromosomes (in chloroplast) unlike nucleus
4. Not associated with protein/histones, unlike nuclear DNA;
5. Introns absent but present in nuclear DNA;

Ignore references to double and single stranded DNA

3 max

(b) Deoxyribose in DNA and ribose in RNA;
(d) 1. Triplets code for same amino acid

Accept: DNA/code/triplets are degenerate
Reject: codons (as question states within genes)
2. Occurs in introns /non-coding sequence;

Reject: codons (as question states within genes)
Ignore junk DNA
Reject: multiple repeats
3. (a) 1. Hydrogen bonds between the base pairs holds two strands together
2. Many hydrogen bonds provides strength

Reject strong hydrogen bonds
(b) (Because) ribosomes assemble polypeptides using mRNA code OR
DNA has two strands each with a different (complementary) base sequence;
(c) Codon;
(d) 1. (Because) some amino acids have more than one codon / mRNA code;
2. Correct example from table.
(e) 1. Stop translation;
2. Result in detachment of polypeptide chain from ribosome.
(f)

CAC	ATG	ACC
Val	Tyr	Trp

Mark each row
4. (a) 1. Hydrogen (bonds);
2. Phosphodiester (bonds);

Accept ester/covalent bond
(b) Correct answer for 2 marks = 1489/1489.2;;

Incorrect answer but for 1 mark accept:
876
OR
1861-1862
(c) 1. tRNA is 'clover leaf shape', mRNA is linear;

Must be a comparison
Reject tRNA is double stranded
Accept tRNA is folded for tRNA is 'clover leaf shaped'
2. tRNA has hydrogen bonds, mRNA does not;
3. tRNA has an amino acid binding site, mRNA does not;

Accept 'CCA end' for amino acid binding site
4. tRNA has anticodon, mRNA has codon;
(d) 1. mRNA fewer nucleotides

OR

Pre-mRNA more nucleotides

OR

mRNA has no introns/has (only) exons

OR

Pre-mRNA has (exons and) introns;
Accept mRNA is shorter OR pre-mRNA is longer
2. (Because of) splicing;
(a) (i) (In all organisms / DNA,) the same triplet codes for the same amino acid;

Accept codon / same three bases / nucleotides
Accept plurals if both triplets and amino acids
Reject triplets code for an amino acid
Reject reference to producing amino acid
(c) (i) 1. (Mutation) changes triplets / codons after that point / causes frame shift;

Accept changes splicing site
Ignore changes in sequence of nucleotides / bases
2. Changes amino acid sequence (after this) / codes for different amino acids (after this);
Accept changes primary structure
Reject changes amino acid formed / one amino acid changed
3. Affects hydrogen / ionic / sulfur bond (not peptide bond);
4. Changes tertiary structure of protein (so non-functional);

Neutral 3-D structure
(ii) 1. Intron non-coding (DNA) / only exons coding;

Context is the intron
Do not mix and match from alternatives
Neutral references to introns removed during splicing
1.and 2. Ignore ref. to code degenerate and get same / different amino acid in sequence
2. (So) not translated / no change in mRNA produced / no effect (on protein) / no effect on amino acid sequence;
Accept does not code for amino acids

OR

3. Prevents / changes splicing;
4. (So) faulty mRNA formed;

Accept exons not joined together / introns not removed
5. Get different amino acid sequence;
6. (a) (i) Repeating units / nucleotides / monomer / molecules;

Allow more than one, but reject two
(ii) 1. $\mathrm{C}=$ hydrogen bonds;
2. $\mathrm{D}=\underline{\text { deoxyribose; }}$

Ignore sugar
3. $E=$ phosphate;

Ignore phosphorus, Ignore molecule
(iii)

Name of base	Percentage
Thymine	34
Cytosine / Guanine	16
Adenine	34
Cytosine / Guanine	16

Spelling must be correct to gain MP1
First mark = names correct
Second mark = \% correct, with adenine as 34\%
(b) (i) 153;
(ii) Some regions of the gene are non-coding / introns / start / stop code / triplet / there are two DNA strands;

Allow addition mutation
Ignore unqualified reference to mutation
Accept reference to introns and exons if given together Ignore 'junk' DNA / multiple repeats
7. (a) (i) Phosphate and ribose;

Accept in either order. Both correct for one mark.
For phosphate accept $\mathrm{PO}_{4} / \mathrm{Pi} /$ (F$)$ but not P .
Do not accept phosphorus.
Ignore references to pentose / sugar.
(ii) TAGGCA;
(b) (i) Does not contain hydrogen bonds / base pairs / contains codons / does not contain anticodon / straight / not folded / no amino acid binding site / longer;

Assume that "it" refers to mRNA.
Do not accept double stranded.
(ii) (pre-mRNA) contains introns / mRNA contains only exons;

Assume that "it" refers to pre-mRNA.
Accept non-coding as equivalent to intron.
(c) (i)

Part of chromosome	\mathbf{U}
Middle	18
End	21

One mark for both figures correct
(ii) 1. Have different (base) sequences / combinations of (bases);
2. (Pre-mRNA) transcribed from different DNA / codes for different proteins;

