

A-Level Biology

DNA Structure and Replication

Mark Scheme

Time available: 70 minutes Marks available: 55 marks

www.accesstuition.com

Mark schemes

1. (a) 1. Hydrogen (bonds);
2. Phosphodiester (bonds);

Accept ester/covalent bond
(b) Correct answer for 2 marks = 1489/1489.2;;

Incorrect answer but for 1 mark accept:
876

OR
1861-1862
(c) 1. tRNA is 'clover leaf shape', mRNA is linear;

Must be a comparison
Reject tRNA is double stranded
Accept tRNA is folded for tRNA is 'clover leaf shaped'
2. tRNA has hydrogen bonds, mRNA does not;
3. tRNA has an amino acid binding site, mRNA does not;

Accept 'CCA end' for amino acid binding site
4. tRNA has anticodon, mRNA has codon;
(d) 1. mRNA fewer nucleotides

OR
Pre-mRNA more nucleotides

OR

mRNA has no introns/has (only) exons

OR

Pre-mRNA has (exons and) introns;
Accept mRNA is shorter OR pre-mRNA is longer
2. (Because of) splicing;
2. (a) 4 rows correct $=2$ marks;;

2 or 3 rows correct = 1 mark;
0 or 1 row correct = 0 marks

Biological molecules	Element			
	Carbon	Nitrogen	Oxygen	Phosphorous
Galactose	\checkmark		\checkmark	
Phospholipid	\checkmark		\checkmark	\checkmark
RNA	\checkmark	\checkmark	\checkmark	\checkmark
Sucrose	\checkmark		\checkmark	

(b) Correct answer for 2 marks, 0.8376308/0.84/0.8 (hours);;

Accept for 1 mark,
Evidence of 4×10^{6} and 3×10^{9} (written in any format, for correct readings from graph)

OR

Evidence of 9.550746785 (correct number of generations)

OR

Evidence of 1.1938443348 (correct generations/ hour)

OR

Evidence of 50.26 (correct generation time in minutes)
Incorrect reading of graph, 3×10^{6} and 2×10^{9}
Accept for 1 mark, calculation carried out correctly
Evidence of 9.380821784 (correct calculation of number of generations)
OR
Evidence of 1.172602723 (correct calculation of generations/ hour)
OR
Evidence of 51.16822503 (correct calculation of generation time in minutes)
OR
Evidence of 0.8528037505 (correct calculation of generation time in hours)
Incorrect reading of graph, $10^{6.4}$ and $10^{9.3}$ OR $10^{6.3}$ and $10^{9.2}$
Accept for 1 mark, calculation carried out correctly
Evidence of 9.633591475 (correct calculation of number of generations)
OR
Evidence of 1.204198934 (correct calculation of generations/ hour)
OR
Evidence of 49.82565445 (correct calculation of generation time in minutes)
OR
Evidence of 0.8304275742 (correct calculation of generation time in hours)
OR
(c) 1. (Model) Q and
(Name) Semi-conservative (replication);
Explanation
2. (Model) \mathbf{P} (is unsupported because)

There should be two peaks in generation 1

OR

(Only) one peak is shown in generation 1

OR

There should be 3:1 (ratio) of peaks in generation 2

OR

There should not be an intermediate $/{ }^{15} \mathrm{~N}{ }^{14} \mathrm{~N}$ peak in generation $1 / 2 / 3$

OR

The original/generation $0 /{ }^{15} \mathrm{~N}$ peak should be in generation $1 / 2 / 3$;
3. (Model) \mathbf{R} (is unsupported because)

There should be >2 peaks in generation $2 / 3$
OR
There should be one wide/overlapping peak in generation 3;
Accept answers 2. and 3. in either order
Accept for 'peak', density OR distribution
Accept for '>2', many OR several
3. (a) 1. Condensation (reaction)/loss of water;
2. (Between) phosphate and deoxyribose;
3. (Catalysed by) DNA polymerase;

Reject if DNA polymerase joins AT/GC OR complementary nucleotides/bases OR forms hydrogen bonds
(b) Correct answer for 2 marks = 70;;

Accept for 1 mark,
$\mathrm{A}=42$ and $\mathrm{T}=42$
OR
420 (total bases in gene)
OR
210 (bases in template strand)
(d) 1. DNA helicase;
2. Breaks hydrogen bonds between base pairs/ AT and GC/complementary bases OR

Breaks hydrogen bonds between polynucleotide strands;
Reject hydrolysis of hydrogen bonds
(c) Histone;
4. (a) Watson and Crick

OR
Crick and Watson; Correct spelling Ignore first/given/fore names
(b) DNA polymerase;

Correct spelling
(c) Role of single-stranded DNA fragments

1. Template;
2. Determines order of nucleotides/bases;

Role of DNA nucleotides

3. Forms complementary pairs / A-T, G-C OR
Forms complementary (DNA) strand;
Ignore forms complementary bases
Accept sequence/ chain for strand
4. (a) 8;

Accept eight
(b) Phosphodiester (bond);

Accept phonetic spellings
1
(c) 1. DNA helicase - (unwinding DNA and) breaking hydrogen bonds / bonds between chains / bases / strands;
2. DNA polymerase - joins (adjacent) nucleotides OR forms phosphodiester bond / sugar-phosphate backbone;

1. Accept H bonds.
2. Accept hydrolyses for breaks
3. Reject forms hydrogen bonds (between nucleotides / bases)
(d) 1. ATP has ribose and DNA nucleotide has deoxyribose;
4. ATP has 3 phosphate (groups) and DNA nucleotide has 1 phosphate (group);
5. ATP - base always adenine and in DNA nucleotide base can be different / varies;

Both parts of each MP needed
3. Reject Uracil / U
3. Accept C, Tor G for different bases

Accept annotated diagram for any of the three marks
2 max
[6]
6. (a) Deoxyribose.
(b) 1. Thymine 18 (\%);
2. Guanine 32 (\%).
(c) DNA polymerase.
(d) 1. (Figure 1 shows) DNA has antiparallel strands / described;
2. (Figure $\mathbf{1}$ shows) shape of the nucleotides is different / nucleotides aligned differently;
3. Enzymes have active sites with specific shape;
4. Only substrates with complementary shape / only the 3' end can bind with active site of enzyme / active site of DNA polymerase.
7. (a) Box around single nucleotide.
(b)

DNA strand	Percentage of each base			
	A	C	G	T
Strand 1	(16)	34	21	29
Strand 2	29	(21)	(34)	16

2 rows correct = 2 marks;
1 row correct = 1 mark.
(c) 1. Reference to DNA polymerase;
2. (Which is) specific;
3. Only complementary with / binds to 5' end (of strand);

Reject hydrogen bonds / base pairing
4. Shapes of 5' end and 3 ' end are different / description of how different.

4
[7]
8. (a) (i) Joins nucleotides (to form new strand).

Accept: joins sugar and phosphate / forms sugar-phosphate backbone
Reject: (DNA polymerase) forms base pairs / hydrogen bonds
(ii) (Prokaryotic DNA)

1. Circular / non-linear (DNA);

Accept converse for eukaryotic DNA
Ignore: references to nucleus, binary fission, strands and plasmids
2. Not (associated) with proteins / histones;

Accept does not form chromosomes / chromatin
3. No introns / no non-coding DNA.

Accept only exons
Q Neutral: no ‘junk’ DNA
(b) (i) 1. Have different genes;

Reject: different alleles
2. (Sobases / triplets) are in a different sequence / order;

Accept: base sequence that matters, not percentage
3. (So) different amino acid (sequence / coded for) / different protein / different polypeptide / different enzyme.
Unqualified 'different amino acids' does not gain a mark
Reject: references to different amino acids formed
Ignore: references to mutations / exons / non-coding / introns
(ii) (Virus DNA)

1. A does not equal T / G does not equal C;

Accept: similar for equal
Accept: virus has more C than G / has more A than T
2. (So) no base pairing;
3. (So) DNA is not double stranded / is single stranded.

