

A-Level Biology

Evolution and Speciation

Mark Scheme

Time available: 53 minutes Marks available: 42 marks

www.accesstuition.com

Mark schemes

- 1.
- (a) 1. Laboratory-raised female (guppies) might not react/behave/choose in the same way (as wild guppies);

Ignore answers relating to sample size Accept laboratory-raised female (guppies) might not be representative of wild females

- (Transparent) barrier might not allow for normal (courtship) behaviour/interaction; Accept choice might involve chemical/ mechanical signals/interaction Accept colour might not be the only thing females are attracted to
- 3. Do not know if (guppies) have been used in previous experiments;
- 4. 10 minutes might not be long enough for females to make a (final) choice

OR

Not enough time for females to make a (final) choice; Accept descriptions of a choice eg 'show attraction'

3 max

- (b) 1. (Females with large brains) will mate with males bright in colour; Accept answers that include references to alleles
 - 2. Their (male) offspring would be (more likely to be) bright in colour;
 - 3. (Bright in colour male) offspring could attract larger brained females;
 - The population/offspring could (evolve to) have larger brains; *Ignore answers relating to females only*
 - 5. The population/offspring are better at identifying/avoiding predators; Ignore answers relating to females only

3 max

- (c) 1. **Not** geographically isolated; Accept are in the same area
 - 2. (Leading to) reproductive isolation

OR

Gene pools kept separate;

Accept large brained females will only mate with males bright in colour <u>and</u> small brained females will only mate with males dull in colour

- 3. Changes in allele <u>frequencies</u>; *Reject gene frequencies*
- 4. Cannot breed/mate to produce fertile offspring; Reject inbreeding

3 max

1

(a) All the <u>alleles</u> in a population;

Accept: The number of alleles in a population. Note: All or number of <u>alleles</u> in a species on its own is not enough on its own.

- (b) 1. Occurs in the same habitat / environment / population;
 - 2. Mutation/s cause different flowering times;
 - 3. Reproductive separation / isolation
 - **OR** No gene flow

2.

OR

Gene pools remain separate;

- 4. Different <u>allele/s</u> passed on / selected **OR**
 - Change in frequency of <u>allele/s</u>
- 5. <u>Disruptive</u> (natural) selection;
- 6. Eventually different species cannot (inter)breed to produce fertile offspring;
 - 1. Accept: are **not** geographically isolated / separated.
 - 1. Accept: same place
 - 3. Accept: no interbreeding but must be a separate idea from mark point 6 which relates to definition of a species.

Note: Answers relating only to allopatric speciation = 3 max, mark points 3, 4 and 6.

5 max

[6]

	(a)	1. No interbreeding / gene pools are separate / geographic(al) isolation;		
3.	(0)	Accept: reproductive isolation as an alternative to no interbreeding.		
		2. Mutation linked to (different) markings/colours;		
		3. Selection/survival linked to (different) markings/colours;		
		 Adapted organisms breed / differential reproductive success; 		
		Note: 'passed on to offspring' on its own is not sufficient for		
		reproduction.		
		5. Change/increase in allele frequency/frequencies;	5	
			U	
	(b)	 (Compare DNA) base sequence / base pairing / (DNA) hybridisation; 		
		Ignore: compare chromosomes / 'genetic make-up'.		
		Accept: (compare) genes / introns / exons.		
		Note: reference to only comparing alleles is 1 max.		
		2. Different in six (species) /different in different species / similar in		
		three (subspecies) /similar in same species/subspecies;		
		Ignore: compare chromosomes / 'genetic make-up'.		
		Reject: ' <u>same</u> alleles/ <u>same</u> DNA bases in three		
		species/subspecies'.		
		Note: mark point 2 can be awarded without mark point 1.		
			2	[7]
				[7]
4.	(a)	1 4 year cycles;		
		2 predator / stoat peaks after prey / lemming;		
		3 lemmings increase due to low numbers of stoats / available food;		
		4 more food for stoats so numbers increase;		
		 5 increased predation reduces number of lemmings; 6 number of stoats decreases due to lack of food / starvation; 		
				6
	(b)	smaller populations have fewer different alleles / more homozygosity / less		
		heterozygosity / smaller gene pool / lower genetic variability;		
		migrants bring in new alleles / increase gene pool;		2
				-
	(c)	geographical isolation of populations;		
		variation present in population(s);		
		different environmental conditions / different selection pressures / different phenotypes selected;		
		change in genetic constitution of populations / gene pools / allele frequency;		
				4
				[12]

(a) breed together; if fertile offspring, then same species;

5.

 (b) <u>isolation</u> of two populations; variation already present due to mutations;

> different environmental conditions / selection pressures leading to selection of different features and hence different alleles; different frequency of alleles; separate gene pools / no interbreeding;

 (c) selection of mate dependent on colour pattern; prevents interbreeding / keeps gene pools separate; 2

4

2