

A-Level Biology
 Genetic Diversity and Natural Selection

Mark Scheme

Time available: 62 minutes Marks available: 54 marks

Mark schemes

1. (a) 1. Different primary structure/amino acid sequence;
2. Different tertiary structure/shape of active site;
3. Enzyme-substrate complexes more likely (with enzyme from $A D^{F}$ allele);

Accept converse for $A D^{S}$
Accept is more complementary
(b) Avoids bias

OR
Results (likely to be) reliable/repeatable;
(c) 1. Flies with $A D^{F} /$ allele have selective advantage (in presence of alcohol);

Accept converse for $A D^{S}$
Accept description of selective advantage
2. So insects (with $A D^{F}$ more likely to) reproduce;
3. Pass on ADF (allele/gene);
4. (So) allele frequency increases;
(d) Answer = Directional selection
2. (a) Histogram

1. Linear scale for y axis;
2. Linear scale for x axis;
3. Correct bar widths and touching;
4. All bar heights plotted accurately;

OR
Bar chart accept for 3 marks,
5. Linear scale for y axis;
6. Labelled bars of equal width and not touching;
7. All bar heights plotted accurately;

OR
Graph accept for 2 marks,
8. Linear scale for y axis;
9. All co-ordinates plotted accurately for frequency density;

Reject answers where data for frequency density and birth mass not used
(b) Correct answer for 2 marks = 20 000;;

Accept for 1 mark, rearranged equation (eg number of babies $=$ frequency density \times range of mass)
(c) 1. Survival increases as the birth mass increases;
2. Survival decreases with smoking;
3. Effect of smoking (on number) similar at all birth masses;
3. (a) Type of selection

1. Directional;

Reason:
2. One extreme selected/removed/favoured/chosen OR
One extreme allowed to breed;
Ignore references to adaptations/natural selection
Accept large fish/small fish for 'extreme'
(b) 1. As a baseline/control;
2. To show effect of no selection OR
To show what happens in a normal population/naturally OR
To show effect of/compare with tank $\mathrm{A} /$ tank C ;
Ignore reference to type of selection
Accept not removing/not catching/not fishing for 'selection'
Accept genetic drift for 'no selection'
Accept no fishing/no selection/no caught fish for 'normal population'
Accept to compare with other results
(c) Correct answer for 2 marks
(How much greater) 1.6 to 1.7 ;;
Accept for 1 mark,
$1.2: 1$ and $2: 1$
Accept for 1 mark,
$4.1: 3.4$ and $4.8: 2.4$
Accept $\frac{5}{3}$ for 2 marks
(d) Not supported because

1. (Sea) fishing reduces (mean) mass of fish;
2. Because large fish removed

OR
Because small fish escape/put back
OR
Because fishing (model) like Tank C;

But

3. Information from (only) one species

OR
Sea fishing catches other/different (types of) species;
4. No statistical test;
5. Size of tank may affect fish growth;
6. Fish in tanks are all same age/sea fish not all the same age;
7. No measure of number of fish (removed)/ only measured mean mass

OR
No measure of (total) yield of fish
OR
No measure of reproductive success of fish;
8. Removal of 90% of population is unlikely to be replicated in the sea fishing;
9. Sea fish do not have life cycle of one year

OR
Sea fish do not reproduce all at the same time;
2 max for "But"
4. (a) Locus;

Accept: loci
1
(b) Differences in DNA / differences in base sequence of DNA;

Accept: number of different alleles / size/variation in gene pool Reject: genes
(c) 1. Jack Russell (genetic) diversity is (significantly) greatest;
2. Bull terrier (genetic) diversity is (significantly) smallest / is most inbred;
3. Miniature terrier and Airedale terriers are similar;

1-3: do not credit just a list of values
4. Standard deviations do not overlap / do overlap with correct ref to significance;

Reference to significance must be relevant to examples given
(d) 1. (Bull terrier) breeding has included a genetic bottleneck/ small population/more inbreeding/ greater selection (pressure);

Accept: founder effect
2. Reduced number of different alleles/size of gene pool;

Reject: decrease in number of genes
Ignore ref to mutations
OR
3. Miniature (terrier) breeding has included more outbreeding/less selection (pressure);
4. Increased number of different alleles/larger gene pool/more variety of alleles;

Reject if genes used instead of alleles
Reject: lower frequency of alleles
Ignore ref to mutations
5. (a) 2 of the following pairs:

Mark for explanation must be paired with correct change in structure

1. Larger leaves;
2. Photosynthesis;

OR

Accept converse descriptions of leaves, root and stem: longer root, taller stem, smaller leaves
3. Larger / bigger / thicker root;
4. Storage;

OR
5. Stem shorter / absent;

Accept converse correct explanation
6. Less energy used in stem growth / more energy for producing sugar;
(b) Beet ready quicker / less time required / allows land to be used again / harvested earlier;

Allow more crops / many harvests. Ignore references to yield / profit

4 max

(c) 1. (Diversity) reduced / fewer different alleles / less variation / smaller gene pool;
2. As alleles have been chosen / rejected;
6. (a) Difference in DNA / base sequence / difference in alleles / genes / gene pool;

Neutral: 'fewer alleles' unless qualified e.g. fewer different alleles.
(b) Environmental;

Accept: Environment
(c) Reduced (genetic diversity);

As fewer different / varied alleles / genes / reduced gene pool;
7. (a) (i) Faster / greater / more effective response in children; Do not accept children have more haemoglobin
(ii) Use line of best fit;

Extrapolate / extend line (and read from graph);
Allow calculation using rate of increase per day = one mark.
However for both marks this must be linked to line of best fit.
(iii) More than one polypeptide chain;

Allow many polypeptide chains.
'Haemoglobin has four polypeptide chains' must be in correct context to gain mark.
(b) (i) Has same water potential;

Allow converse for effect of using distilled water or a concentrated solution.

No (net) water movement / osmosis;

Cells will not swell / burst / change size;
No osmotic lysis = two marks
(ii) Pernicious anaemia (cells) greater range / spread / variation of diameters / widths;

Some pernicious anaemia (cells) wider than $9(\mu \mathrm{~m})$ / some less than $5.5(\mu \mathrm{~m})$ / without pernicious anaemia none more than $9(\mu \mathrm{~m}) /$ none less than $5.5(\mu \mathrm{~m})$;

Pernicious anaemia (cells) peak / most frequent at $8.5(\mu \mathrm{~m}) /$ peak / most frequent at higher diameter / / without pernicious anaemia peak / most frequent at $7(\mu \mathrm{~m})$ / peaks at lower diameter;

There are several alternatives for marking points 2 and 3

