

A-Level Biology

Haemoglobin

Mark Scheme

Time available: 85 minutes Marks available: 69 marks

www.accesstuition.com

Mark schemes

(a) 1. Increases/more oxygen dissociation/unloading 1. OR Deceases haemoglobin's affinity for O 2; Accept more readily Accept releases more O₂ 2. (By) decreasing (blood) pH/increasing acidity; Reject if reference made to active site 2 (b) High(er) affinity for O₂ (than haemoglobin) 1. OR Dissociates oxygen less readily OR Associates more readily; Accept holds O_2 at lower ppO_2 2. Allows (aerobic) respiration when diving/at low(er) pO₂ OR Provides oxygen when haemoglobin unloaded OR Delays anaerobic respiration/lactate production; Accept acts as an oxygen store 2 Correct answer for 2 marks (c) 10.8 to 11 (mins) OR 10 minutes and 48 seconds = 2 marks;; Accept for 1 mark, 10.48 minutes OR

Reference to 2057.7 to 2058 (10 700 ÷ 5.2, time oxygen would last

Reference to 56 to 56.3 (10700 ÷ 190, oxygen in 1 kg of seal)

Reference to 988 (5.2 \times 190, oxygen used min⁻¹ by the seal)

Incorrect answer with correct answer shown in working

if its mass was 1 kg)

OR

OR

OR

[6]

2

(a) 1. y axis 0 – 100 in linear scale and x axis minimum 1 to 8 in linear scale and both axes use at least half size of grid;

If tick marks are used on the axis, they must be accurate to within \pm half a small square.

2. Correct plots for 50% and 25% for both animals;

25% - 1.9, 3.3 <u>and</u> 50% - 3.2 and 6.5 Accept plot ± half a small square.

- Both curves levelling off (at higher partial pressures and at percentage saturations ≤100%);
- (b) Correct answer of 15 (times faster) = 2marks ;;

If ≥3sf given, accept answers in the range 15.0 to 15.4 (times faster) = 2marks;;

Incorrect answer 1 mark for evidence of:

23^{-0.27} divided by 550 000^{-0.27} OR 0.42888777 OR 0.02819045 OR Between 27 and 27.1 OR Between 1.77599861 and 1.8 OR 0.06

Accept any number of significant figures ≤2, if rounding correct.

2

3

(c) 1. Mouse haemoglobin/Hb has a lower affinity for oxygen

OR

2.

For the same pO₂ the mouse <u>haemoglobin/Hb</u> is less saturated **OR**

At oxygen concentrations found in tissue mouse <u>haemoglobin/Hb</u> is less saturated;

For 'Hb is less saturated' accept 'less oxygen will be bound to Hb'.

More oxygen can be dissociated/released/unloaded (for metabolic reactions/respiration);

Accept 'oxygen dissociated/released/unloaded **more** readily/easily /quickly'

Reject 'oxygen loaded more readily/easily/quickly' or 'more oxygen loaded'

Mouse

(d)

- (Smaller so) larger surface area to volume ratio; Accept larger SA:V. Must be comparative.
- More/faster heat loss (per gram/in relation to body size); Ignore heat lost more easily/readily. Must be comparative.
- (Faster rate of) respiration/metabolism releases heat; Accept respiration/metabolism replaces heat. Reject produce/generate heat/energy.

3 [10]

- (a) 1. Binding of first oxygen changes tertiary / quaternary (structure) of haemoglobin; *Ignore ref. to 'positive cooperativity' unqualified Ignore ref. to named bonds Accept conformational shift caused*
 - Creates / leads to / uncovers second / another binding site OR
 Uncovers another iron / Fe / haem group to bind to;
 Reject ref. to active site
- (b) 5.6×10^6 (red blood cells per mm³);;

Award 1 max for one of

 2.8×10^4 (standard form but ignoring dilution)

OR

5 600 000 (correct but not standard form)

OR

 5.6×10^5 (failure to use depth of liquid on slide);

3.

2

- (c) 1. To avoid dealing with parts of cells; 2. To avoid counting same cells twice / more than once; 3. To be consistent / get comparable results; Accept more accuracy Ignore reliability / repeatability / reproducibility / precision / validity 2 max (d) There are fewer white cells, **so** no need to dilute (further to see enough); Accept converse of too few to see if greater dilution / at 200 times Do not accept ref. to numbers of red and white cells unqualified Ignore ref. to white cells larger (e) White cells have a nucleus (that stains but red cells do not); Accept converse for red cells (a) First oxygen binds (to Hb) causing change in shape; 4. (Shape change of Hb) allows more O_2 to bind (easily) / greater saturation with O_2 OR Cooperative binding; (b) 1. (HbA has) lower affinity for O_2 at low partial pressures; OR (HbA has) lower affinity for oxygen at pp found in tissues; 2. Easier unloading of O_2 for (aerobic) respiration; (c) 1. A large/significant increase in HbF; 2. (HbF has) higher affinity for O_2 (than faulty HbA); Higher proportion of HbF in blood so more oxygen carried; 3. OR More oxygen carried after treatment; (a) (Molecule contains) more than one polypeptide (chain). 5. Accept: has four polypeptides oxygenated haemoglobin ×100 (b) maximum saturation (C) 1. At low partial pressure of oxygen, little increase in saturation as oxygen increases;
 - 2. (then) rapid rise as it gets easier for oxygen to bind. Accept use of appropriate numbers from graph

1

1

2

2

3

1

1

[7]

[8]

(d) Ensures rapid / more intake of oxygen in lungs / release of oxygen in tissues.

(e)

Volume of blood leaving heart = (0.6 × 0.6) dm³ minute⁻¹ = 3.6 dm³ minute⁻¹

		Mas	s of h	aemoglobin in this volume of blood = (3.6×150) g = 540g				
		Volume of oxygen at 100% saturation of this haemoglobin = $(540 \times 1.35) = 729 \text{ cm}^3$						
		The graph shows 60% of this volume of oxygen has been released to the tissues, so final answer is $(729 \times 0.6) = 437.4 \text{ cm}^3 \text{ minute}^{-1}$						
							[8]	
6	(a)	Qua	iternar	y (structure);				
0.				Accept phonetic spelling eg quarternary/quarternery /4°				
				Award no mark for quaternary as part of a list				
					1			
	(b)	423;	;					
					1			
	(c)	1.	Oxył upta in ga	naemoglobin formed/ haemoglobin is loaded/ .kes/associates/binds with oxygen in area of higher ppO ₂ / as exchange surface/lungs/gills;				
				Reference to "react with" = max 1				
				Accept: reversible interaction with oxygen				
			2.	Ignore: haemoglobin is carried / contained in red blood cells (oxygen) unloaded/dissociates from/released (in area of lower ppO ₂ / in capillaries/to cells/tissues);				
					2			
	(d)	(i)	56(%	6):				
		()	X	Accept responses in the range 54-58(%)	1			
		(ii)	1.	(Anaemia curve shifted to right) haemoglobin has low <u>er</u> affinity for oxygen / binds less tightly;				
			2.	Assume reference is to haemoglobin of anaemia unless stated releases more oxygen / oxygen is released quick <u>er</u> / oxygen				
			3.	dissociates/ unloads more readily to muscles/tissues/cells; (For) respiration:				
			0.	Accept: even with a lower haemoglobin concentration / meet demand for ATP/energy;				
					3	гол		
						[ð]		

(a) High(er) affinity for oxygen / absorbs / loads more oxygen;

At lower partial pressure (of oxygen) / lower pO₂;

Accept: Loads oxygen 'quicker', 'more readily', 'higher saturation', use of figures from graph for first point. Neutral: References to unloading.

- 2
- (b) 1. (Hydrostatic) pressure lower in capillary / blood / higher in tissues / tissue fluid;
 - 2. <u>Water (returns);</u>
 - 3. By osmosis;
 - 4. <u>Water potential</u> lower / more negative in blood / capillary / higher / less negative water potential in tissues / via water potential gradient;
 - 5. Due to protein (in blood);
 - 6. (Returns) via lymph (system / vessels);

First marking point must be in context of between blood and tissue fluid.

Neutral: References to hydrostatic pressure and water potential at arteriole end of capillary.

3 max

8.

(a)

7.

Statement	Haemo- globin	Cellulose	Starch
Has a quaternary structure	~		
Formed by condensation reactions	~	~	~
Contains nitrogen	~		

One mark for each correct row

(b) 16;

3

1

	(c)	1.	High <u>er</u> affinity / loads more oxygen at low / same / high partial pressure / pO_2 ;		
		2.	(Therefore) oxygen moves from mother / to fetus;	2	
	(d)	1.	Low affinity / oxygen dissociates:	2	
	()		Assume 'it' is adult haemoglobin		
			1. Accept: converse if 'fetal haemoglobin' is clearly stated		
		2.	(Oxygen) to respiring tissues / muscles / cells;		
			2. Q : Neutral 'respirate'	2	
	(e)	Eno Hb a	ugh adult Hb produced / enough oxygen released / idea that curves / affinities / are similar / more red blood cells produced;		
			Neutral: 'adult Hb is also produced' as in the question stem		
			Reject: curves / affinities / Hb are the same		
				1	[9]
0	(a)	Mor	e that one polypeptide / chain;		
9.			Ignore references to haem / other groups		
				1	
	(b)	(i)	141;		
				1	
		(ii)	1. Stop / start sequences;		
			 Non coding DNA (in the gene) / introns / multiple repeats / junk DNA; Do not credit "some bases repeated" 		
			3 Two chains / a non-coding strand / complementary base pairs;		
			4. <u>Addition</u> of base by mutation;	2	
				2 max	
	(c)	Diffe	erent primary structure / amino acids / different number of polypeptide chains;		
			Question is about haemoglobin so do not credit differences in DNA	_	
				1	
	(d)	1.	Low partial pressure of oxygen in lungs;		
		2.	(Llama) haemoglobin able to load more oxygen / (llama) haemoglobin saturated (at low / particular partial pressure of oxygen);		
		3.	Higher affinity for oxygen;		
			The terms used in the graph (or near approximations) should be used in this answer.		
			Ignore references to unloading		
			The answer must relate to llamas		
				3	
					[8]