

A-Level Biology

 Inheritance

 Inheritance}

Mark Scheme

Time available: 69 minutes Marks available: 51 marks

1. (a) 1. Males have one allele; Accept males only need one allele.
2. Females need two recessive alleles

OR

Females must be homozygous recessive
OR
Females could have dominant and recessive alleles

OR

Females could be heterozygous/carriers; Ignore references to X and Y chromosomes.
Accept r as recessive allele and R as dominant allele.
If no reference to allele, accept for one mark male needs one recessive gene whereas females need two recessive genes.
(b) 1. Box 2.

All females red-eyed, all males white-eyed.
Reject if more than one box with tick. Ignore crossed-out ticks.
(c) 1. The (two) genes are linked

OR

Autosomal linkage;
Accept that the genes are on the same chromosome.
Accept 'Alleles are linked' (accept symbols for alleles) but reject if context suggests alleles of the 'same gene'.
2. No crossing over (occurs)

OR

(Linked) genes are close together;
Accept crossing over less likely to occur.
3. No Gl and no gL (gametes produced)

OR

No Ggll and no ggLI (offspring produced)
OR
Only GL and gl (gametes produced);
Ignore reference to independent assortment.
(d) 1. Correct answer of $8 \times 10^{10}=\mathbf{3}$ marks;;;
2. Correct answer not in standard form = $\mathbf{2}$ marks

OR
$1.6 \times 10^{13}=\mathbf{2}$ mark
OR
$1.6 \times 10^{11}=\mathbf{2}$ mark
OR
$6.4 \times 10^{11}=\mathbf{2}$ mark
OR
Shows 8×10^{10} in the working $=\mathbf{2}$ marks;;
3. $1.28 \times 10^{12}=1$ mark

OR
$3.2 \times 10^{11}=1$ mark
OR
$8 \times 10^{11}=1$ mark
OR
$8 \times 10^{9}=1$ mark
OR
Shows 1.6×10^{11} in the working = $\mathbf{1}$ mark
OR
Shows 200^{4} in the working = $\mathbf{1}$ mark;
If no other mark is credited accept for one mark working which shows multiplication by 200 for 4 generations. This could be shown in a variety of ways e.g. multiplied by 400 divided by 2 for 4 generations.
2. (a) $G g X^{R} X^{r}$;

Accept alleles in any order.
Accept GgRr with alleles in any order.
(b) If it were recessive all flies of 3 and 4 would be grey OR
3 and 4 produce 9/black (fly)
OR
Grey parents produce black (fly);
(c)

Mark in pairs 1 and 2 or 3 and 4 .

1. (Fly) 3 (and 4) produce $9 /$ black (fly) OR
(Fly) 9 would not be black
OR
(Fly) 9 would be grey
OR
Grey parents/male produce black female (fly);
2. (Fly) 3 would pass dominant allele to 9 ;

Accept allele for grey colour would be passed on by 3.
3. (Fly) 2 (and 1) produce $5 /$ grey (fly)

OR
Black female produces grey male
OR
(Fly) 5 could not be grey
OR
(Fly) 5 would be black;
4. (Fly) 5 would receive recessive allele from 2 ;

Accept allele for black colour would be passed on by 2.
(d) 1. $G g X^{r} X^{r}$ and $g g X^{R} Y$;

Accept the following alternative notations for sex-linked crosses e.g. for mp 1
Ggrr and ggRY or
Ggrr and gg R-or
Ggrr and ggR
i.e. space for Y chromosome.
2. $G g X^{R} X^{r}, g g X^{R} X^{r}, G g X^{r} Y$ and $g g X^{r} Y$;

Accept any order of genotypes and phenotypes.
Accept the following alternative notations for sex-linked crosses e.g. for mp 1
Ggrr and ggRY or
Ggrr and gg R-or
Ggrr and ggR
i.e. space for Y chromosome.
3. Grey-bodied red-eyed female, black-bodied
red-eyed female, grey-bodied white-eyed
male, black-bodied white-eyed male and ratio
1:1:1:1;
Accept any order of genotypes and phenotypes.
Accept sequence of phenotypes does not need to mirror genotypes but must be correct.
Accept alternative ratios in correct proportions e.g. 4:4:4:4
If 1, 2 and 3 incorrect allow one mark for correct gametes from incorrect dihybrid parental genotypes.
(e) 1. Correct answer of $48 \%=\mathbf{2}$ marks;;

Accept 0.48 for 1 mark.
2. Incorrect answer but shows understanding that

$$
2 \mathrm{pq}=\text { heterozygous/carriers = } \mathbf{1} \text { mark }
$$

OR
Incorrect answer but shows understanding that

$$
\begin{aligned}
& 1-\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)=\text { heterozygous/carriers = } \mathbf{1} \text { mark; } \\
& \text { Accept understanding of 2pq by using a calculation } \\
& \text { involving } 2 \times \text { two different numbers. }
\end{aligned}
$$

3. (a) 1. Small sample size;
4. Fusion/fertilisation of gametes is random;

Ignore breeding is random
3. Linked Genes;

Accept crossing over / sex linkage
4. Epistasis;
5. Lethal genotypes;
(b) ttmm;

Accept mmtt or any order of these alleles e.g. mtmt, tmtm etc
(c) 1. Genes are linked;

Accept 'Alleles are linked' but reject if context suggests alleles of the 'same gene'
2. Produces few(er) tall, mottled and dwarf, normal offspring;

Accept produces few Tm and tM gametes
Accept 'fewer recombinants'
3. Crossing over (has occurred);
(d) One mark for each correct column;;

Phenotype of offspring	Ratio of offspring
Tall (plant and) normal (leaves)	9
Tall (plant and) mottled (leaves)	3
Dwarf (plant and) normal (leaves)	3
Dwarf (plant and) mottled (leaves)	1

Accept correct phenotypes in any order for one mark and correct ratio in any order e.g. 3:9:3:1 for one mark
However, phenotypes and ratio must match for two marks
Accept alternative wording e.g. short for dwarf
Accept $9 / 16{ }^{3} / 16{ }^{3} / 16{ }^{1} / 16$
4. (a) 1. Crossing over;
2. Independent segregation/assortment (of homologous chromosomes);

Accept independent assortment of alleles.
Accept meiosis as an alternative for 1 or 2 if neither of these marks is awarded.
3. Random fusion of gametes

OR
Random fertilisation;
Accept random mating.
2 max
(b) Codominance;

Accept incomplete dominance
(c) 1. $\mathrm{ttC}^{\mathrm{R}} \mathrm{C}^{\mathrm{W}}$ and $\mathrm{TtC}^{\mathrm{W}} \mathrm{C}^{\mathrm{W}}$;
2. $\operatorname{TtC}^{R} C^{W}, \mathrm{TtC}^{\mathrm{W}} \mathrm{C}^{\mathrm{W}}, \mathrm{tt}^{R} C^{\mathrm{W}}$ and $\mathrm{tt}^{\mathrm{W}} \mathrm{C}^{\mathrm{W}}$;
3. Tall pink, tall white, dwarf pink, dwarf white, and ratio $1: 1: 1: 1$;

Accept: any order of genotypes and phenotypes and ignore if on incorrect answer lines.
Accept: sequence of phenotypes does not need to mirror genotypes but must be correct.
Accept equivalent ratios e.g. 4:4:4:4.
Allow equivalent of mark points 2 and 3 for cross using homozygous tall parent i.e. $T T C^{W} C^{W}$.
Allow one mark for correct dihybrid genotypes of offspring from incorrect parental genotypes.
(d) 1. Correct answer of $42 \%=\mathbf{2}$ marks;;

Accept: 0.42 for 1 mark.
2. Incorrect answer but shows understanding that $2 p q=$ pink/heterozygous/carriers = $\mathbf{1}$ mark

OR
Answer $=0.42$ = $\mathbf{1}$ mark $\mathbf{O R}$
Answer $=16.38 / 16.4=1 \mathbf{m a r k} ;$
Accept $1-\left(p^{2}+q^{2}\right)$ for $2 p q$ or equivalent using numbers.
Accept: understanding of 2pq by using a calculation involving $2 \times$ two different numbers.
5. (a) 1. (Expression / appearance / characteristic due to) genetic constitution / genotype / allele(s);
2. (Expression / appearance / characteristic due to) environment;

1. Accept: named characteristic.
2. Accept: homozygous / heterozygous / genes / DNA.
3. Ignore: chromosomes.
(b) Epistasis

OR
Epistatic (interaction / control);
Accept: phonetic spellings.
Ignore: preceding word e.g. (recessive / dominant) epistasis.
(c) $\mathbf{A A b b}$ - white
aaBB - yellow;
Both correct for one mark.
(d) 1. $\mathrm{AaBb}, \mathrm{Aabb}, a \mathrm{aBb}, \mathrm{aabb}$;
2. White, (white), yellow, green;
3. 2:1:1;

Note: If genotypes are incorrect = zero marks.

1. Accept: equivalent genotypes e.g. ABab for AaBb.

Accept: sequence of phenotypes does not need to mirror genotypes but must be correct.
3. Accept: ratios of 2:1:1 or 1:2:1 or 1:1:2 even if sequence of phenotypes do not match if mark points 1 and 2 have been awarded.
3. Accept: alternative ratios in correct proportions e.g. 4:2:2
3. Ignore: percentages / fractions.
(e) 1. Correct answer of $32 \%=\mathbf{2}$ marks;
2. Incorrect answer but shows understanding that
$2 p q=$ heterozygous / carriers = 1 mark;
Accept: understanding of 2pq by using a calculation involving $2 \times$ two different numbers.
6. (a) (Genes / loci) on same chromosome.
(b) 1. GN and gn linked;
2. GgNn individual produces mainly GN and gn gametes;
3. Crossing over produces some / few Gn and gN gametes;
4. So few(er) Ggnn and ggNn individuals.
(c) (Grey long:grey short:black long:black short) $=1: 1: 1: 1$
(d) 1. Chi squared test;
2. Categorical data.

