

A-Level Biology

Insect and Fish Gas Exchange

Mark Scheme

Time available: 78 minutes Marks available: 62 marks

1. (a) 1. Tracheoles have thin walls so short diffusion distance to cells;
2. Highly branched / large number of tracheoles so short diffusion distance to cells;
3. Highly branched / large number of tracheoles so large surface area (for gas exchange);
4. Tracheae provide tubes full of air so fast diffusion (into insect tissues);
5. Fluid in the end of the tracheoles that moves out (into tissues) during exercise so faster diffusion through the air to the gas exchange surface;
OR
Fluid in the end of the tracheoles that moves out (into tissues) during exercise so larger surface area (for gas exchange);
6. Body can be moved (by muscles) to move air so maintains diffusion / concentration gradient for oxygen / carbon dioxide;
7. Do not accept unqualified references to thin membranes.

Max 2 if any reference to blood
Ignore references to spiracles
5. Accept 'water' for fluid.

Accept 'cells' and 'tissues' as interchangeable words.
(b) 1. Damselfly larvae has high(er) metabolic / respiratory (rate);
2. (So) uses more oxygen (per unit time / per unit mass);

Idea of 'more / high' is needed for both mark points.
2. Accept 'needs' for 'uses'
2. Ignore references to absorbing / obtaining / uptake of more oxygen
(d) 1. Don't use shading;
2. Only use single lines / don't use sketching (lines) / ensure lines are continuous / connected;
3. Add further labels / annotations;
4. Don't cross label lines;
5. Add magnification / scale (bar);

Reject 'colour in'.
Reject 'use of electron microscopes'
Ignore 'use a sharp pencil'
2. (a) (i) Spiracle;

Accept: Spiracles

1
(ii) Tracheole/trachea;

Accept: Tracheoles/tracheae
Ignore: System
(b) 1. Oxygen used in (aerobic) respiration;
2. (so) oxygen (concentration) gradient (established);

Accept description of gradient
Ignore: 'along gradient idea' unless direction is made clear
Ignore: movement through gas/water
Reject: gradient in wrong direction
3. (so) oxygen diffuses in; 2 and 3.

Accept: oxygen moves down a diffusion gradient for 2 marks
(c) 1. Abdominal pumping/pressure in tubes linked to carbon dioxide release;

MP1 relates to description of link shown in graphs
2. (Abdominal) pumping raises pressure in body;

Needs idea of causation, not just description of correlation
3. Air/carbon dioxide pushed out of body /air/carbon dioxide moves down pressure gradient (to atmosphere);

Reject ref to concentration gradients/diffusion
3. (a) increasing carbon dioxide concentration / partial pressure;
(decrease in oxygen negates)
(b) (oxygen is used in) respiration therefore diffuses (from tracheae) to tissues; oxygen unable to enter organism;
(c) spiracles not open all the time; therefore there is less water loss (by diffusion through spiracles);
4. (a) 1. Spiracles (lead) to tracheae (that lead) to tracheoles;
2. Open spiracles allow diffusion of oxygen from air OR

Oxygen diffusion through tracheae/tracheoles;
3. Tracheoles are highly branched so large surface area (for exchange);
4. Tracheole (walls) thin so short diffusion distance (to cells)

OR

Highly branched tracheoles so short diffusion distance (to cells)

OR

Tracheoles push into cells so short diffusion distance;
5. Tracheole walls are permeable to oxygen;
6. Cuticle/chitin in tracheae impermeable so reduce water loss;
7. Spiracles close (eg.during inactivity) preventing water loss;

Accept 8. (Tiny) hairs around spiracles reduce evaporation
5 max
(b) Breathing in

1. Diaphragm (muscles) contract and diaphragm flattens;

Accept lungs or thorax for 'thoracic cavity'
2. External intercostal muscles contract and ribcage pulled up/out;
3. (Causes) volume increase and pressure decrease in thoracic cavity (to below atmospheric pressure);

Breathing out
4. Diaphragm (muscles) relaxes and internal intercostal muscles contract;
5. (Causes) volume decrease and pressure increase in thoracic cavity (to above atmospheric pressure);

Accept labelled structures in correct position on a diagram
5. (a) 1. Water and blood flow in opposite directions;

Accept: diagram if clearly annotated
2. Maintains concentration / diffusion gradient / equilibrium not reached / water always next to blood with a lower concentration of oxygen;

Must have the idea of 'maintaining' or 'always' in reference to concentration / diffusion gradient
Accept: constant concentration / diffusion gradient
3. Along whole / length of gill / lamellae;

Accept: gill plate / gill filament
(b) 1. (Thicker lamellae so) greater / longer diffusion distance / pathway; Q Neutral: 'thicker' diffusion pathway
2. (Lamellae fuse so) reduced surface area;

Accept: reduced SA:VOL
(c) (i) Correct answer of 5.1 or $5.14(\mathbf{2 8 5 7})\left(\mathrm{dm}^{3}\right)=2$ marks;;

Allow 1 mark max for an answer of 5 if the correct answer of 5.1 or 5.14(2857) is not shown

One mark for incorrect answers that show $\mathbf{3 6}$ or $\mathbf{0 . 4 \times 9 0}$ or $\mathbf{9 0 \div 7}$;
(ii) 1. Increased metabolism / respiration / enzyme activity;

Accept: enzymes work more efficiently
2. Less oxygen (dissolved in water);

Neutral: references to increased kinetic energy (of water molecules)
6. (a) 1. Many lamellae / filaments so large surface area;
2. Thin (surface) so short diffusion pathway;
$1 \& 2$ must each have a feature and a consequence
(b) 1. Water and blood flow in opposite directions;

Allow diagram showing counter-flow
2. Blood always passing water with a higher oxygen concentration;
3. Diffusion gradient maintained throughout length (of gill)

OR

Diffusion occurs throughout length of gill

OR

If water and blood flowed in same direction equilibrium would be reached;
7. (a) F = Filament and
$G=$ (Secondary) lamella(e) / (gill) plate;
Reject gill arch
Accept primary lamella(e) for F
(b) 1. Water and blood flow in opposite directions;
2. Maintains diffusion/concentration gradient of oxygen

Accept: converse for carbon dioxide
Accept: equilibrium not reached
OR
Oxygen concentration always higher (in water);
3. (Diffusion) along length of lamellae/filament/gill/capillary;

Accept: all/whole of lamellae/filament//gill/capillary
8. (a) 1. Large surface area provided by lamellae / filaments increases diffusion / makes diffusion efficient;;

Q Candidates are required to refer to lamellae or filaments. Do not penalise for confusion between two
2. Thin epithelium / distance between water and blood;
3. Water and blood flow in opposite directions / countercurrent;
4. (Point 4) maintains concentration gradient (along gill) / equilibrium not reached / as water always next to blood with lower concentration of oxygen;
5. Circulation replaces blood saturated with oxygen;
6. Ventilation replaces water (as oxygen removed);
(b) Mixing of air and water (at surface);

Air has higher concentration of oxygen than water;
Diffusion into water;
Plants / seaweeds near surface / in light;
Produce oxygen by photosynthesis;
(c) Not much oxygen near sea bed;

Toadfish haemoglobin (nearly) saturated / loads readily at / has higher affinity for oxygen at low partial pressure (of oxygen);
(d) The chimpanzee and the bonobo are more closely related (than to the gorilla);

They have identical amino acids / one of the amino acids is different in the gorilla;

