

A-Level Biology

Mass Transport in Plants

Mark Scheme

Time available: 82 minutes Marks available: 61 marks

Mark schemes

1. (a) Correct answer for 2 marks = 14/14.02/14.024;;

Accept for 1 mark,
mean $=8.2$
OR
uncertainty $=1.15$
(b) 1. Sucrose actively transported (into phloem);
2. Lowering/reducing water potential

OR
More negative water potential;
3. Water moves (into phloem) by osmosis (from xylem);
(c) Phloem pressure falls as (rate of) water movement (in xylem) increases

OR

Inversely proportional;
Accept converse
(d) 1. High (rate of) transpiration/evaporation;
2. Water lost through stomata

OR
(High) tension in xylem;
3. (Causes) less water movement from xylem to phloem

OR

Insufficient water potential in phloem to draw water from xylem;
2. (a) 1. Initial and final mass (of beaker and all contents);

Accept change in mass/weight
Ignore volume
Reject change in mass of celery/beaker/water alone
2. Number of (groups of) xylem vessels;

Accept amount for 'number'
(b) Prevent evaporation/water loss

OR
(So) evaporation/water loss/transpiration only from celery;
(c) 1. Water evaporates/is transpired (from leaves/ stalk/celery/plant);
2. Water potential gradient/lower water potential creates tension/pulls up water
OR
Osmosis creates tension/pulls up water;
Accept negative pressure for tension
3. Hydrogen bonds/cohesion/adhesion maintains column;
(d) 1. Cut away from body;

Accept description of cutting technique to avoid cutting fingers
2. Against hard/non-slip/flat surface;

Accept named hard surface eg tile/board
(e) Median (no mark)

1. (Presence of) outliers/80/70

OR
Small sample size/8 (measurements);
Accept anomalies / extremes for 'outliers'
2. 41;

Accept for 1 mark,
Mean of 47
OR
Mode of 35
3. (a) 1. Used to compare effect of other treatments / as a baseline;

Accept for 2 marks, substance (X) and not agar / block / water that caused the difference in the number of roots.
Do not accept unqualified reference to "compare results".
2. Shows / Measures effect of substance (X);

OR

Accounts for effect of substances produced naturally;
Accept measures effect of independent variable
(b) 1. (D shows) substance (X) is not required for (some) root growth / production of roots; OR
Substances (already) present in stem cause (some) root growth;
2. Substance X moves through plant;

Accept X moves through stem / phloem
3. (E shows) substance (X) causes / increases / doubles number of roots / root growth;
(c) In support of mass flow hypothesis

1. (\mathbf{F} shows) phloem is involved;
2. (G shows) respiration / active transport is involved (in flow / movement);
3. Because $4^{\circ} \mathrm{C} /$ cooling reduces / slows / stops flow / movement;
4. The agar block is the source;
5. Roots are the sink;

Against the mass flow hypothesis

6. No bulge above ringing (in \mathbf{F});
7. No (role for) osmosis / hydrostatic pressure / water movement;

Accept no turgor pressure
8. Movement could be due to gravity;
9. Roots still grow without (intact/functioning) phloem;
10. No leaves / sugars / photosynthesis to act as a source;

Each point must be clearly made in the context of support or against.
Ignore sugar / sucrose
3 max for "support" and 3 max for "against"
4. (a) Correct answer 23.55-24 two marks;

For one mark
5.9

OR
94.2;
(b) 1. Method for measuring area; e.g. draw round (each) leaf on graph paper and count squares;
2. Of both sides of (each) leaf;
3. Divide rate (of water loss / uptake from potometer) by (total) surface area (of leaves);
(c) Plant has roots

OR

xylem cells very narrow;
Ignore references to air bubbles / mass flow / photosynthesis
Accept xylem damaged when cut
(d) 1. Both small / similar size (so fit channel);
2. Have a similar shape (so bind to / fit channel);

1. Accept same height and width

Ignore refs to polar / non-polar
2. Accept Aquaporin complementary to oxygen(s)
(e) 1. Single-stranded RNA (has base sequence) complementary to PIP1 mRNA;
2. Binds to mRNA (of PIP1) / leads to destruction of mRNA;
3. Prevents / reduces translation (of PIP1);
4. Reduces photosynthesis/named process that uses water;
3. Less made is insufficient

3 max
(f) Not all of mRNA bound to single-stranded RNA / there is more mRNA than interfering RNA
OR
Not all mRNA destroyed / disabled;
Accept mutations in transgene,
Accept not all cells with transgenes
(g) 1. Loss of PIP reduces water and carbon dioxide movement;
2. Differences significant because SDs don't overlap

OR

Need stats test to see whether significant differences (or not);
3. Greater (proportional) effect on carbon dioxide transport;
4. Not all movement through PIP;

1. Accept converse for wild type
2. Reject references to results significant or not significant
3. Accept error bars for SDs
4. (a) 1. In source / leaf sugars actively transported into phloem;
5. By companion cells;
6. Lowers water potential of sieve cell / tube and water enters by osmosis;
7. Increase in pressure causes mass movement (towards sink / root);
8. Sugars used / converted in root for respiration for storage.

Accept starch
(b) Respiration.
(c) 1. (About) 30 hours;
2. Time between peak ${ }^{14} \mathrm{C}$ at top of trunk and bottom.
(d) Length of trunk (between top and bottom).
6. (a) 1. Contents of phloem vessel pushed into insect's mouth by high pressure;
2. (High pressure in phloem vessel) caused by loading of sugars into phloem in leaf;
3. And (resulting) entry of water by osmosis.
(b) 1. Polysaccharides are insoluble;
2. So do not affect water potential of gut.
(c) 1. (Only few bacteria passed from parent, so) only a few (copies of) genes passed on (in bacteria);
2. May not / does not include all alleles (of genes, so diversity reduced) OR
Small number of bacteria transmitted means unrepresentative sample.
(d) 1. Number / mass / density of insects per plant;
2. Stage of development / size of plants / insects; Ignore any abiotic factor
(e) Draw around leaf on graph paper and count squares;

