

A-Level Biology

Osmoregulation

Mark Scheme

Time available: 80 minutes Marks available: 63 marks

www.accesstuition.com

Mark schemes

1.	(a)				
			Ignore references to podocytes		
		1.	High blood/hydrostatic pressure;		
			Ignore references to afferent and efferent arterioles		
			lgnore 'increasing/high <u>er</u> blood pressure' as does not necessarily mean high		
		2.	Two named small substances pass out eg water, glucose, ions, urea;		
			Accept correct named ions		
			Accept mineral ions/minerals		
			Accept amino acids/ <u>small</u> proteins		
			Ignore references to molecules not filtered		
		3.	(Through small) gaps/pores/fenestrations in (capillary) endothelium;		
			Accept epithelium for endothelium		
		4.	(And) through (capillary) basement membrane;		
				3 max	
	(b)	☑ Glucose by facilitated diffusion and active transport and water down a water			
		poter	ntial gradient		
				1	
	(c)	17.4;			
			Accept any number of fours after the decimal point.	1	
				1	

- (d) 1. Thicker medulla means a longer loop (of Henle);
 - 2. (The longer the loop of Henle means) **increase** in sodium ion concentration (in medulla)

OR

(The longer the loop of Henle means) sodium ion gradient maintained for **longer** (in medulla)

OR

(The longer the loop of Henle means) **more** sodium ions are moved out (into medulla);

Must have idea of increase/longer/more

 (Therefore) water potential gradient maintained (for longer), so more water (re)absorbed (from loop and collecting duct);
 OR

More water is (re)absorbed **from** the loop (of Henle) / collecting duct **by** osmosis;

Reject water being reabsorbed **into** the loop of Henle Direction is important Accept Ψ for water potential

(a) Water is also reabsorbed

2.

3.

1

3

2

4

[6]

3

[8]

- (b) 1. Concentration rises in descending limb because sodium ions enter and water lost;
 - Concentration falls in ascending limb because sodium ions (and chloride) ions actively removed;
 - 3. But water remains (in ascending limb) because its walls are impermeable (to water).
- (c) 1. Concentration rises in collecting duct because it loses water by <u>osmosis;</u>
 - 2. ADH increases permeability (of walls of collecting duct) to water.

(a) Hypothalamus.
 (b) 1. Water potential of blood will decrease;
 2. Water moves from osmoreceptor into blood by osmosis.
 (c) 1. Permeability of membrane / cells (to water) is increased;
 2. More water absorbed from / leaves distal tubule / collecting duct;

- 3. Smaller volume of urine;
- 4. Urine becomes more concentrated.

(d) 115.2 / 115.3 (cm³ minute⁻¹).

4.

5.

(e) Any **two** of the following for 1 mark: Muscle / body mass Ethnicity Exercise Kidney disease – do not accept 'health'.

1

1

- [9]
- Hydrostatic pressure / description of pressure / description of how pressure generated; (a) Causes ultrafiltration (Allow description of ultrafiltration) at Bowman's capsule / glomeruli / renal capsule; Through basement membrane; Enabled by small size urea molecule;
 - 2 max
 - (b) Reabsorption of water / by osmosis; At the PCT / descending LoH; At the DCT / CD; Active transport of ions / glucose creates gradient (in context); Ignore references to facilitated diffusion or to selective reabsorption.
- 3 max

5

[5]

- 1. Blood pressure / hydrostatic pressure; (a)
 - 2. Small molecules / named example;
 - 3. Pass through basement membrane / basement membrane acts as filter;
 - 4. Protein too large to go through / large so stays behind;
 - 5. Presence of pores in capillaries / presence of podocytes;
 - 1. (b) High concentration of glucose in blood;
 - 2. High concentration in tubule / in filtrate;
 - 3. Reabsorbed by facilitated diffusion / active transport;
 - 4. Requires proteins / carriers;
 - 5. These are working at maximum rate / are saturated;
 - 6. Not all glucose is reabsorbed / some is lost in urine;

4 max

- (c) For general principle, applied to either example:
 - 1. More water (from filtrate) reabsorbed / returned to blood / less lost in urine;
 - 2. By osmosis;

6.

- 3. From collecting duct / from end of second convoluted tubule;
- 4. Due to longer loop of Henle;

For loop of Henle, maximum 2 marks:

- 5. Sodium / chloride ions absorbed from filtrate in ascending limb;
- 6. Gradient established in medulla / concentration of ions increases down medulla;

For ADH, maximum 2 marks:

- 7. Acts on collecting duct / distal convoluted tubule / second convoluted tubule;
- 8. Makes cells more permeable / inserts aquaporins in plasma membranes;

Note: to score full marks, candidates must make one specific statement about Loop of Henle and one about ADH.

	200		6 max	[15]
(a)	In Diabetic person:			
	1. 2. 3.	Lack of insulin / reduced sensitivity of cells to insulin; <u>Reduced</u> uptake of glucose by cells / liver / muscles; <u>Reduced</u> conversion of glucose to glycogen; <u>Penalise zero / no</u> <u>once</u> only	3	
(b)	(i)	Leaves the blood at kidney; Taken back into blood / reabsorbed (from kidney tubule); <i>Reject some reabsorption</i>		
		(Reabsorbed) in <u>1st convoluted tubule;</u> <i>Kidney / named part needs to be mentioned once</i>	2 max	
	(ii)	Large amount / high concentration of glucose <u>in filtrate;</u> Cannot all be reabsorbed / 1 st convoluted tube too short to reabsorb all of glucose / saturation of carriers;	2	
(C)	-	yme has specific <u>shape</u> to <u>active site</u> / active site has specific tertiary structure; y glucose fits / has complementary structure / can form ES complex;	2	

	(d)	Glucose in <u>filtrate</u> lowers water potential; <i>Ignore 'urine'. Accept increase solute potential</i> <u>Lower</u> Ψ gradient / <u>less</u> difference in Ψ filtrate – Ψ plasma; <i>Ignore 'concentration'</i>		
		Less water reabsorbed by osmosis; Accept diffusion of water. Reject no water reabsorbed if implied		
	(e)	 Glomerulus / Bowman's capsule / renal capsule; Basement membrane; Proteins are large (molecules) / proteins cannot normally pass through filter / proteins can only pass through if filter damaged; 	3	[15]
7.	(a)	Lower volume AND higher concentration; ADH increases water re-absorption (in 2 nd convoluted tubule / collecting duct) / increases water permeability / adds aqua porous; Evidence: observe increasing concentration (of dissolved substances) (in 2 nd convoluted tubule / collecting duct) / concentration increased c.f. ADH absent <i>Once only for full marks</i>	3	
	(b)	Protein molecule too large (to cross filter in healthy person); Protein can cross if filter is damaged / protein from damaged glomerulus enters filtrate;	2	[5]