

A-Level Biology

Osmoregulation

Question Paper

Time available: 80 minutes Marks available: 63 marks

www.accesstuition.com

١.	(a)	Describe how ultrafiltration occurs in a glomerulus.		
				(3)
	(b)	Glucose and water are reabsorbed by the proximal convoluted tubule	of a nephron.	(3)
		Put a tick (\checkmark) in the box next to the correct ways in which glucose and reabsorbed.	d water are	
		Glucose by active transport and water against a water potential gradient		
		Glucose by diffusion and water down a water potential gradient		
		Glucose by facilitated diffusion and active transport and water against a water potential gradient		
		Glucose by facilitated diffusion and active transport and water down a water potential gradient		

www.accesstuition.com

(1)

concentration of 16.56 arbitrary units.	Calculate the mean length of the loop of Henle in an organism that produces urine with concentration of 16.56 arbitrary units.	·	
concentration of 16.56 arbitrary units.	·	Calculate the mean length of the loop of Henle in an organism that produces uri	
	Calculate the mean length of the loop of Henle in an organism that produces urine with	·	

The equation shows the relationship between urine concentration in arbitrary units (y) and

(1)

	ated the relationship between the thickness of the kidney medulla of of mammals and the concentration of their urine.	
The graph shows t	their results.	
	5000 7	
	4000 -	
Concentration of	3000-	
urine / mmol dm ⁻³	2000-	
	1000 -	
	0 5 10 15 Thickness of the medulla / arbitrary units	
	(Tota	al 8 n

(d)

2.

The graph below shows the concentration of the filtrate in different parts of one kidney tubule.

(a) More than 99% of biological molecules are reabsorbed from the filtrate in the proximal convoluted tubule.

Despite this, the concentration of fluid in this tubule remains constant.

Explain why.		

(b) Explain the shape of the curve in the loop of Henle in the graph.

(3)

(1)

	Explain your answer.	
	·	
	(То	otal 6 r
		otal 6 n
Osm	(To	
Osm (a)		
	noreceptors are specialised cells that respond to changes in the water potential of the b	
	noreceptors are specialised cells that respond to changes in the water potential of the b	
	noreceptors are specialised cells that respond to changes in the water potential of the b	
	noreceptors are specialised cells that respond to changes in the water potential of the b	
	noreceptors are specialised cells that respond to changes in the water potential of the b	
(a)	Give the location of osmoreceptors in the body of a mammal. When a person is dehydrated, the cell volume of an osmoreceptor decreases.	
(a)	Give the location of osmoreceptors in the body of a mammal. When a person is dehydrated, the cell volume of an osmoreceptor decreases.	
(a)	Give the location of osmoreceptors in the body of a mammal. When a person is dehydrated, the cell volume of an osmoreceptor decreases.	
(a)	Give the location of osmoreceptors in the body of a mammal. When a person is dehydrated, the cell volume of an osmoreceptor decreases.	

e a substance called creatinine from the blood. The rate at which they filter the blood the glomerular filtration rate (GFR).	
nours, a person excreted 1660 mg of creatinine in his urine. The concentration of crea blood entering his kidneys was constant at 0.01 mg cm ⁻³ .	atinine
Calculate the GFR in cm ³ minute ⁻¹ .	
Answer =	
Creatinine is a breakdown product of creatine found in muscle tissues. Apart from age	o ond
gender, give two factors that could affect the concentration of creatinine in the blood.	e and

	In a	mammal, urea is removed from the blood by the kidneys and concentrated in the filtra	e.
	(a)	Describe how urea is removed from the blood.	
			(2)
	(b)	Explain how urea is concentrated in the filtrate.	
			(3)
		т)	otal 5 marks)
•	ultra	ee processes are involved in the formation of urine in a mammalian kidney. These are filtration, selective reabsorption and concentration. The diagram shows where these esses take place in a nephron.	
	P.00	2	

	 		•
 	 	 	•
 	 	 	•
 			•
no have diabetes of tion of glucose in t			

(c)	Some desert mammals have long loops of Henle and secrete large amounts of antidiure hormone (ADH). Explain how these two features are adaptations to living in desert conditions.	etic
	(Total	(6) 15 marks)
6. (a)	A diabetic person and a non-diabetic person each ate the same amount of glucose. One hour later, the glucose concentration in the blood of the diabetic person was higher than that of the non-diabetic person. Explain why.	
		(3)

ii)	A high blood glucose concentration could cause glucose to be present in the urine of a diabetic person. Suggest how.
te	st for glucose in urine uses immobilised enzymes on a plastic test strip. One of these
nzy	st for glucose in urine uses immobilised enzymes on a plastic test strip. One of these mes is glucose oxidase. Explain why the test strip detects glucose and no other stance.
nzy	mes is glucose oxidase. Explain why the test strip detects glucose and no other
nzy ubs	ymes is glucose oxidase. Explain why the test strip detects glucose and no other stance.
nzy ubs	mes is glucose oxidase. Explain why the test strip detects glucose and no other
nzy ubs	mes is glucose oxidase. Explain why the test strip detects glucose and no other stance. e glomerular filtrate of a diabetic person contains a high concentration of glucose, he

-		•	al 15 m
The table shows the concentrations of dis nephron in a kidney in the presence and i		-	l).
Region of nephron		n of dissolved arbitrary units	
	ADH present	ADH absent	
First convoluted tubule	300	300	
Bend of loop of Henle	1000	1000	
Start of second convoluted tubule	150	150	
Middle of second convoluted tubule	250	90	
	300	50	
Start of collecting duct	1000	50	
Start of collecting duct End of collecting duct			l
	n the volume and conce	entration of urine proc	duced

7.

Glomerulosclerosis is a disease in which the glomeruli of the kidney are damaged. E why protein is not normally present in the urine of a healthy person but may be present urine of a person with glomerulosclerosis.	•
the urine of a person with glomeruloscierosis.	
	-
	-
	-
	-
(T	Total 5 m