

A-Level Biology

Populations in Ecosystems

Mark Scheme

Time available: 78 minutes Marks available: 50 marks

Mark schemes

1. (a) Interspecific (competition);
(b) 1. Do not provide the livestock/cows/horses/yaks with extra food, as their populations will not grow large enough to cause competition

OR

Keep small numbers of livestock/cow/horse/yak, so their populations will not grow large enough to cause competition;

Requires suggestion and explanation for each mark
2. Do not farm horse/choose animals other than horse to farm, as they have the same habitat and (very) similar food to the ibex;

Accept farm fewer horses as they have the same habitat and (very) similar food to the ibex
3. Keep horses (but) in enclosed/separate areas, as they occupy the same habitats as ibex;

Accept descriptions of enclosed areas, eg fenced areas or accept do not let horses out
4. Farm cows, as they have the least similar food and (one of the least similar) habitat (to that of the ibex);
5. Farm yaks, as despite eating the same food, they live in a very different habitat;
6. (Only) grow crops, so no competition;

Accept examples of crops
2. (a) 1. Use a grid

Divide area into squares/sections;
Accept use of tape measures/map/area with coordinates.
Accept Belt transect.
2. Method of obtaining random coordinates/numbers e.g. calculator/computer /random numbers table/generator;

If transect method used accept quadrats at regular intervals or current mark point 2.
3. Count number/frequency in a quadrat/section;

Accept \% cover in quadrat/section.
Ignore amount/abundance.
4. Large sample and calculate mean/average number (per quadrat/section);

Accept large sample and calculate mean \%.
Accept large sample and method of calculating mean.
Accept many/multiple for large sample but ignore several.
If a specific number is given it must be 10 or more.
5. Valid method of calculating total number of sundews, e.g. mean number of plants per quadrat/section $/ \mathrm{m}^{2}$ multiplied by number of quadrats $/$ sections $/ \mathrm{m}^{2}$ in marsh;

Do not allow 'scale up' without further qualification.
Do not award if \% cover determined.
(b)

Mark in pairs 1 and 2, or 3 and 4.
Ignore carbohydrates, lipids or named carbohydrate/ lipid.

1. Digestion/breakdown of proteins;
2. Provides amino acids

OR
(Sundew can) produce a named (organic) nitrogen-containing compound e.g. proteins, amino acids, DNA, ATP;

Ignore if nitrate or ammonium ions given as products.
3. Digestion/breakdown of named (organic) phosphate-containing compound e.g. DNA, RNA;
4. Provides named (organic) phosphate-containing product e.g. nucleotides OR
(Sundew can) produce a named phosphate-containing compound e.g. ATP, DNA;

Accept phosphate as a named product.
3. (a) 1. Compete (with fertile males) to mate / for food / resources

OR

intraspecific competition;
2. Do not reproduce / breed OR Reduces population (of mosquitoes);

1. Must convey idea of competition.
2. Accept: 'fewer mosquitoes'/ 'fewer offspring'.
3. (a) 1. (Use) coordinates / number the rocks/sites/squares; Ignore: references to grid, tape measures, metre rulers etc.
4. Method of generating/finding random numbers e.g. calculator/computer/random number generator/random numbers table;

Accept: numbers out of a hat / use of dice.
(c) Any suitable factor with valid explanation = 1 mark

1. Wave action - firmer grip on rock is necessary (at either site);
2. Wind/air movement/less humid - more evaporation at site A / more (physical) damage;
3. Light - (linked to) photosynthesis (at either site);
4. Temperature - (linked to) photosynthesis/respiration/enzymes/ evaporation (at either site);
5. pH - (linked to) enzymes/proteins;

Note: other common factors include salt (salinity) linked to water potential / named nutrient e.g. nitrate linked to protein/DNA.
Ignore: carbon dioxide/oxygen/pollution/rainfall/food/nutrients.
Reject: biotic factors e.g. predation.
(d) 1. Greater variety of food / more food sources;

Ignore: more food.
2. More/variety of habitats/niches;

Ignore: homes/shelters.
Accept: different habitats.
(e) (i) 1. (So they were) hungry/not full;

Accept: description of hunger e.g. appetite / 'empty stomach'/'so they eat'.
2. (Allows) comparison;
(ii) 1. Alga without consumer/named consumer/animal;

Accept: repeat experiment without consumer.
Accept: in separate tank / in tank where not eaten.
2. (Find change in mass) in dark;
3. For 50 hours;

Accept: 'same time as in experiment'.
Accept: For lower time period then scaled up to 50.
(iii) 1. For Laurencia pacifica and Cystoseira osmondacea
(difference in results) significant /reject null hypothesis / not due to chance / less than 5\%/0.05 probability due to chance;
Accept: for Laurencia pacifica 'less than 1\%/0.01 probability'.
2. For Egregia leavigata and Microcystis pyrifera no significant (difference in results)/accept null hypothesis / is due to chance/more than 5\%/0.05 probability due to chance;
Accept: 'insignificant' for 'no significant difference'.
3. (Difference in results) for Laurencia pacifica is the most significant;
Note: reference to probabilities on their own is not sufficient.
1, 2 and 3. Accept: abbreviations for all species.
5. (a) (i) (Organisms that) can breed together / interbreed and produce fertile offspring;

Need both aspects. Reject 'inbreed'
Reject viable offspring
(b)

2 marks for correct answer
1 mark for having \boldsymbol{A} on top of equation (recognises that total population related to total area)

Note:

$$
\begin{aligned}
& \mathbf{P}=\mathbf{A} \times \mathbf{S} / \mathbf{R} \text { or } \\
& \mathbf{P}=\mathbf{A} / \mathbf{R} \times \mathbf{S}
\end{aligned}
$$

are also correct.
Allow 1 mark for

(c) (i) In mark-release-recapture (technique)

Accept converse by considering assumptions of proportional sampling

1. No assumption that organisms are uniformly distributed;
2. Size of total area / size of sampled region not required;

Marking point 1 or marking point 2 do not have to start with the same technique
In this case, allow difference by implication i.e. do not penalise if the two techniques are not compared
(ii) Animals are from / all part of the same population;
6. (a) (i) 1. No overall pattern / pattern (of right or left most common) is not the same for all islands;
Allow expression in other ways e.g. three islands show left on top is more common
2. For (B) \mathbf{C} and \mathbf{E} there is little difference;
3. Large differences on \mathbf{A} and \mathbf{D} and opposite ways (to each other);

Need both aspects but allow other expressions of 'opposite ways'
(ii) 1. Can record all individuals on (small) islands;
2. (So) no / less sampling error;
3. (Maybe) different rates of mutation / different selection pressures / different environmental conditions;
4. Inbreeding / breeding with close relatives (more likely);
5. (Little) gene flow / (more chance of) genetic drift;

Accept reference to either of these ideas for this point
(b) 1. If R is recessive, $R \times R$ parents cannot produce L offspring;

Accept use of genetic diagrams to illustrate points 1 and 2
2. If L is recessive, $L \times L$ parents cannot produce R offspring;

Accept right arm on top as R etc.
3. $\quad R \times R$ and $L \times L$ parents produce both types of offspring;

Need reference to two parent crosses for this mark
(c) Both L and R in a set of twins / (some) twins show different arm-folding;

