

A-Level Biology

Synaptic Transmission

Mark Scheme

Time available: 60 minutes Marks available: 43 marks

www.accesstuition.com

Mark schemes

1.	(a)	1.	(Dopamine) <u>diffuses</u> across (synapse);	
		2.	Attaches to <u>receptors</u> on <u>postsynaptic membrane;</u> Ignore name/nature of receptor e.g. cholinergic	
		3.	Stimulates entry of sodium <u>ions</u> and depolarisation/action potential; Accept Na ⁺ for sodium ions Accept generator potential for action potential	3
	(b)	1.	Morphine attaches to <u>opioid</u> receptors; <i>Reject reference to active site</i>	
		2.	(More) dopamine released (to provide pain relief); Reject receptors release dopamine	2
	(c)	1.	 (Inside of postsynaptic) neurone becomes more negative/hyperpolarisation/inhibitory postsynaptic potential; Ignore K⁺ Accept -75mV or any value below this as equivalent to more negative Accept 'decrease in charge' 	
		2.	More sodium ions required (to reach threshold) OR Not enough sodium ions enter (to reach threshold); <i>Accept Na</i> ⁺ for sodium ions	
		3.	For depolarisation/action potential; Context must covey idea that depolarisation / action potential is less likely	3

[8]

- 1. Depolarisation of presynaptic <u>membrane</u>; Accept action potential for depolarisation.
- Calcium channels open and calcium <u>ions</u> enter (synaptic knob); Accept Ca²⁺.
- (Calcium ions cause) synaptic vesicles move to/fuse with presynaptic membrane and release acetylcholine/neurotransmitter;

Accept abbreviations for acetylcholine as term is in the question.

- 4. Acetylcholine/neurotransmitter <u>diffuses</u> across (synaptic cleft); Accept abbreviations for acetylcholine as term is in the question.
- 5. (Acetylcholine attaches) to receptors on the postsynaptic membrane;
- Sodium <u>ions</u> enter (postsynaptic neurone) leading to depolarisation; Accept Na⁺. Accept 'action potential' or 'generator potential' for depolarisation.

5 max

[5]

A Vesicle;

3.

2.

- B Neurotransmitter;
- C Synaptic cleft;

B Accept named neurotransmitter

[3]

(a) 1. Complementary to receptor for acetylcholine; 4. 2. Binds to receptor; 3. On postsynaptic (membrane); 4. Prevents acetylcholine from binding; 5. No action potential in postsynaptic neurone; Accept description of 'binds' 3. Must be in context of membrane 5. Accept 'depolarisation' but not 'impulse' 3 max (b) Takes longer to become unconscious than it does to stop 1. blinking; 2. No overlap of standard error; 1. Accept reference to 0.24/0.28 and 0.48/0.44 in place of longer 2 (C) Different body masses but need to have comparable effects; Do not accept 'same' effects or unqualified references to 'bias / comparison / fair test'. 1 [6] Causes sodium ion channels to open; (a) 1. 5. 1. Reject if wrong sequence of events 2. Sodium ions enter (cell and cause depolarisation); Reject sodium on its own only once 2 (b) 1. (If not removed) keeps binding (to receptors); Accept answers based on what happens if it is transported out – ie what should happen 2. Keeps causing action potentials / depolarisation (in post-synaptic membrane); 2. Accept keeps Na + channels open(ing) 2

	(c)	1.	Movement in all groups (about) same before MDMA; Q		
		2.	MDMA increases movement in Group L; 2. Accept normal mice for L		
		3.	Group K shows MDMA causes movement; <i>3. Accept K is a control</i>		
		4.	No / little increase in mice without receptor / Group M ;	3 max	[7]
6.	(a)	actic calc vesi acet binc	on potential arrives / depolarisation occurs; ium ions enter synaptic knob; cles fuse with membrane; tylcholine diffuses (across synaptic cleft); ls to receptors;		
				4 max	
	(b)	insio thre dep	de becomes more negatively charged / hyperpolarised; stimulation does not reach shold level / action potential not produced; olarisation does not occur / reduces effect of sodium ions entering;	ו 3	
	(c)	(i)	inhibits enzyme (which breaks down GABA); more GABA available (to inhibit neurone);		
			OR		
			binds to (GABA) receptors; inhibits neuronal activity / chloride ions enter (neurone);	2 max	
		(ii)	receptors have different tertiary / 3D structure / shape not complementary; GABA cannot bind; inhibition of neuronal activity does not occur / chloride ions do not enter;		
				3	
	(d)	mot left (or area; cerebral hemisphere;	2	
					[14]