M1.
(a)

Protein synthesis	\mathbf{L};
Modifies protein	$\mathbf{H} ;$
Aerobic respiration	$\mathbf{N} ;$

(b) 1800-2200;
$1.8,2.0$ or 2.2 in working or answer = 1 mark. lgnore units in answer.

1 mark for an incorrect answer in which student clearly divides measured length by actual length (of scale).

Accept I / A or I / O for 1 mark but ignore triangle.
Accept approx 60 mm divided by $30 \mu \mathrm{~m}$ for 1 mark

M2.(a) Any five from:

1. Cell homogenisation to break open cells;
2. Accept suitable method of breaking open cells.
3. Filter to remove (large) debris / whole cells;
4. Reject removes cell walls.
5. Use isotonic solution to prevent damage to mitochondria / organelles;
6. Ignore to prevent damage to cells.
7. Keep cold to prevent / reduce damage by enzymes / use buffer to prevent protein / enzyme denaturation;
8. Centrifuge (at lower speed / 1000 g) to separate nuclei / cell fragments / heavy organelles;
9. Ignore incorrect numerical values.
10. Re-spin (supernatant / after nuclei / pellet removed) at higher speed to get mitochondria in pellet / at bottom.

6. Must have location

Reject ref to plant cell organelles only once
(b) Principles:

1. Electrons pass through / enter (thin) specimen;
2. Denser parts absorb more electrons;
3. (So) denser parts appear darker;
4. Electrons have short wavelength so give high resolution;

Principles:
Allow maximum of 3 marks

Limitations:

5. Cannot look at living material / Must be in a vacuum;
6. Specimen must be (very) thin;
7. Artefacts present;
8. Complex staining method / complex / long preparation time;
9. Image not in 3D / only 2D images produced.

Limitations:
Context of limitation must be clear, not simply explaining how TEM works
E.g "allows you to see organelles as a thin section is used" is not a limitation
Allow maximum of 3 marks
Ignore ref to colour

M3.(a) 1. DNA replicated;
Reject: DNA replication in the wrong stage
2. (Involving) specific / accurate / complementary base-pairing;

Accept: semi conservative replication
3. (Ref to) two identical / sister chromatids;
4. Each chromatid / moves / is separated to (opposite) poles / ends of cell.

Reject: meiosis / homologous chromosomes / crossing over
Note: sister chromatids move to opposite poles / ends $=2$
marks for mp 3 and mp 4
Reject: events in wrong phase / stage
(b) (i) 1. To allow (more) light through; Accept: transparent
2. A single / few layer(s) of cells to be viewed.

Accept: (thin) for better / easier stain penetration
(ii) 1. More / faster mitosis / division near tip / at 0.2 mm ; Neutral: references to largest mitotic index
2. (Almost) no mitosis / division at / after 1.6 mm from tip; Accept: cell division for mitosis Penalise once for references to meiosis
3. (So) roots grow by mitosis / adding new cells to the tip. Accept: growth occurs at / near/just behind the tip (of the root)
Accept: converse arguments

M4.(a) 1. Large / dense / heavy cells;
2. Form pellet / move to bottom of tube (when centrifuged);
3. Liquid/ supernatant can be removed.

Must refer to whole cells.
(b) Break down cells / cell parts / toxins.

Idea of 'break down / digestion' needed, not just damage
(c) 1. To stop / reduce them being damaged / destroyed / killed;

Reject (to stop) bacteria being denatured.
2. By stomach acid.

Must be in context of stomach.
(d) 1. More cell damage when both present / A;
2. Some cell damage when either there on their own / some cell damage in B and C;

MP1 and MP2 - figures given from the graph are insufficient.
3. Standard deviation does not overlap for A with B and C so difference is real;

MP3 and MP4 both aspects needed to gain mark.
4. Standard deviations do overlap between B and C so no real difference.

MP3 and MP4 accept reference to significance / chance for 'real difference'
(e) 1. Enzyme (a protein) is broken down (so no enzyme activity); Accept hydrolyse / digested for 'broken down'.
2. No toxin (as a result of protein-digesting enzyme activity);

Must be in the correct context.
3. (So) toxin is protein.

This must be stated, not inferred from use of 'protein-digesting enzyme'.

M5.(a) 1. Fields of view randomly chosen;
2. Several fields of view;
3. All same species (of animal / hamster);

Reject general statements related to sample size. All mark points relate directly to information provided in Resource A. Accept 'all (Mesocricetus) auratus'.
4. Same muscle / organ used / only diaphragm used;
5. Used at least 8 (animals) in each (age) group.

4 max
(b) (i) 15

Correct answer $=2$ marks.
Allow 1 mark for showing
$69 \div 4.6$

OR
answer of 10 / 10.1 (correct calculation using fast in error.)
(ii) 1. (Calculation) used mean (number of capillaries);
2. Variation in number of capillaries per fibre.

Note: maximum of 1 mark for this question. Ignore reference to an anomaly or calculation errors.

1 max
(c) (i) (Removing diaphragm means) animals / hamsters are killed.
(ii) 1. (Suggests) significant (difference) between young and adult; MP1, MP2, MP4 and MP5 can include use of figures but check figures are used correctly.
2. (Suggests) not significant (difference) between adult and old; Statements related to 'results being significant / not significant' do not meet the marking points. It is the difference that is significant or not. However, only penalise this error once.
3. For slow and fast fibres;

This MP can be given in the context of either MP1 or MP2 but only allow once. As well as this context there must be a reference to 'both' types of fibre.
4. (Suggests) significant (difference) between young and old for fast (fibres)
OR
(Suggests) not significant (difference) between young and old for slow (fibres);
All aspects of either approach required to gain credit.
5. (Suggests) significant (difference) where means \pm SD do not overlap
OR
(Suggests) not significant (difference) where means \pm SD overlap;
All aspects of either approach required to gain credit.
6. Stats test is required (to establish whether significant or not).

M6.(a) 1. How to break open cells and remove debris;
2. Solution is cold / isotonic / buffered;
3. Second pellet is chloroplast.
(b) 1. A stroma;
2. B granum.

Accept thylakoid
(c) $\left(\frac{\text { length of chloroplast }}{\text { length of bar }}\right)_{\mu \mathrm{m}}$
(d) Two of the following for one mark:

Mitochondrion / ribosome / endoplasmic reticulum / lysosome / cell-surface membrane.

