

A-Level Chemistry

Inorganic Practical Questions

Mark Scheme

Time available: 76 minutes Marks available: 61 marks

www.accesstuition.com

Mark schemes

(a)	Identity of gas: Carbon dioxide / CO ₂	1
	Test: When gas bubbled through limewater, a white ppt formed When gas bubbled through limewater, it turns milky/cloudy M2 dependent on M1	
		1
(b)	Effervescence (with Na ₂ CO ₃), so contains H ⁺ ions / Effervescence (with Na ₂ CO ₃), so is acidic	
	The result from Test 1 shows the presence of H ⁺ / acidic	1
	White ppt (with $AgNO_3$), so contains chloride ions	
	The result from Test 2 shows the presence of chloride ions.	
	Allow balanced equation for each test that links to each observation	L
(c)	(Warm with some) NaOH,	1
		•
		1
	Add (acidified) BaCl ₂ / Ba(NO ₃) ₂	
	If reagent incorrect, cannot score observation mark	1
	White ppt formed	
	If reagent incomplete, mark on	1
	Use of $Ba(OH)_2$ can score M1 and M3	L
(d)	The second mass is smaller / the mass after step 4 is smaller than the mass after step 2	
	•	1
	AgCI dissolves in dilute ammonia / some ppt dissolves as AgCI is soluble in dilute ammonia	a
	The ppt formed by chloride ions dissolves in dilute ammonia.	1
		[10]
	(b) (c)	 Test: When gas bubbled through limewater, a white ppt formed When gas bubbled through limewater, it turns milky/cloudy M2 dependent on M1 (b) Effervescence (with Na₂CO₃), so contains H⁺ ions / Effervescence (with Na₂CO₃), so is acidic The result from Test 1 shows the presence of H⁺ / acidic White ppt (with AgNO₃), so contains chloride ions The result from Test 2 shows the presence of chloride ions. Allow balanced equation for each test that links to each observation (c) (Warm with some) NaOH, Damp red litmus at the mouth of the tube turns blue Do not allow red litmus dipped in solution Add (acidified) BaCl₂ / Ba(NO₃)₂ If reagent incorrect, cannot score observation mark White ppt formed If reagent incomplete, mark on Use of Ba(OH)₂ can score M1 and M3 (d) The second mass is smaller / the mass after step 4 is smaller than the mass after step 2 AgCl dissolves in dilute ammonia / some ppt dissolves as AgCl is soluble in dilute ammonia

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

Level 3 5-6 marks	All stages are covered and the explanation of each stage is correct and virtually complete Answer communicates the whole explanation, including equations, coherently and shows a logical progression through all three stages
Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages covered and the explanations are generally correct and virtually complete Answer is coherent and shows some progression through all three stages. Some steps in each stage may be incomplete
Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete Answer shows some progression between two stages
Level 0 0 marks	Insufficient correct Chemistry to warrant a mark

Indicative Chemistry content

Stage 1 Formula

1a) divides % masses by A_r for each element (N = 0.221; H = 6.18; Al = 0.221; S = 0.441; O = 4.41) 1b) divides throughout by smallest and confirms <u>formula</u> as NH₂₈AlS₂O₂₀ Correct formula ticks 1a and 1b irrespective of method 1c) x = 12

Stage 2 Ion ID

2a) addition of NaOH/OH⁻ and warming gives gas that turns (damp) red litmus blue (= ammonia) showing NH_4^+ (water bath = warm)

2b) white ppt with acidified $BaCl_2/Ba^{2+} = SO_4^{2-}$

2c) addition of NaOH/OH⁻ until in excess gives white ppt that redissolves = Al^{3+} **OR** addition of carbonate giving white ppt and effervescence/fizzing/bubbles/gas formed

2.

Stage 3 Equations (Ignore state symbols)

3.

4.

		1
	Proton donor	
	Allow (Bronsted-Lowry) acid	1
(b)	$2 \text{ NaBr} + 2 \text{ H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{SO}_2 + \text{Br}_2 + 2 \text{ H}_2\text{O}$	
	Or 2 NaBr + 3 H ₂ SO ₄ \rightarrow 2 NaHSO ₄ + SO ₂ + Br ₂ + 2 H ₂ O Or	
	$2 H^+ + 2 Br^- + H_2SO_4 \rightarrow SO_2 + Br_2 + 2 H_2O$ Or	
	4 H ⁺ + 2 Br ⁻ + SO ₄ ²⁻ \rightarrow SO ₂ + Br ₂ + 2 H ₂ O	
	Ignore 2 NaBr + $H_2SO_4 \rightarrow Na_2SO_4 + 2 HBr$	
	Ignore NaBr + $H_2SO_4 \rightarrow NaHSO_4 + HBr$	1
	brown gas or brown fumes or orange gas or orange fumes	
	Do not accept yellow solid	
	Ignore fizzing and misty fumes	
		1
	Oxidising agent	
	Allow electron acceptor	
	Ignore acid / proton donor	_
		1
(c)	(+)5 and -1	
		1
(d)	Is oxidised and reduced	
	Allow undergoes disproportionation	
	Allows gains and loses electrons	1
		T

(e) D AgBr

5.

Ignore state symbols

$$E Ag_2CO_3$$

$$F CO_2$$

$$2 Ag^+ + CO_3^{2-} \rightarrow Ag_2CO_3$$

$$AgBr + 2 NH_3 \rightarrow Ag(NH_3)_2^+ + Br^-$$

$$Or \rightarrow Ag(NH_3)_2Br$$

$$One mark for Ag(NH_3)_2 + and 1 mark for equation$$

$$If D = AgCI, then allow 2 marks for$$

$$AgCI + 2 NH_3 \rightarrow Ag(NH_3)_2^+ + CI^-$$

$$(a) Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$$

$$Allow Fe + 2H^+ + SO_4^{2-} \rightarrow Fe^{2+} + SO_4^{2-} + H_2$$

$$Allow Fe + 2H^+ + SO_4^{2-} \rightarrow Fe^{2+} + SO_4^{2-} + H_2$$

$$Allow Fe + 2H^+ + SO_4^{2-} \rightarrow Fe^{2+} + SO_4^{2-} + H_2$$

$$Allow Fe + 2H^+ + SO_4^{2-} \rightarrow Fe^{2+} + SO_4^{2-} + H_2$$

$$Allow rether that the solution of the that the solution of the theta the solution of the theta the solution of the theta t$$

(c)
$$5 \text{ Fe}^{2+} + \text{MnO}_4^- + 8 \text{ H}^+ \rightarrow 5 \text{ Fe}^{3+} + \text{Mn}^{2+} + 4 \text{ H}_2\text{O}$$

Allow multiples
Ignore state symbols
NOT if electrons shown

1

1

(e) pipette

Q is calcium or magnesium

burette	
	both needed
	Allow (graduated/volumetric) pipette
	Allow (graduated/volumetric) burette
	NOT dropping pipette
1.47(%)	
	Allow 1.5(%)

6.

7.

(f)

(a)

 1

 bromide

 1

 R is aluminium

 1

 chloride

 1

 S is iron(III)

 1

 sulfate

 1

 Mark this question independently

(b)
$$Ba^{2+} + SO_4^{2-} \longrightarrow BaSO_4$$

 $[Fe(H_2O)_6]^{3+} + 3OH^- \longrightarrow Fe(H_2O)_3(OH)_3 + 3H_2O$

$$2[Fe(H_2O)_6]^{3+} + 3CO_3^{2-} \longrightarrow 2Fe(H_2O)_3(OH)_3 + 3H_2O + 3CO_2$$

$$[Fe(H_2O)_6]^{3+} + 4Cl^- \longrightarrow [FeCl_4]^- + 6H_2O$$

(a)
$$FeSO_4 + Na_2C_2O_4 \rightarrow FeC_2O_4 + Na_2SO_4$$

Allow multiples, including fractions.
Allow $Fe^{2+} + C_2O_4^{2-} \rightarrow FeC_2O_4$
Allow correct equation which includes water of crystallisation.

1

1

1

1

1

[10]

1

1

[6]

(b) $M_{\rm r}$ FeSO₄.7H₂O = 277.9 Allow if shown clearly in the calculation. Allow 278 1 Moles = $6.95 / 277.9 = 2.5(0) \times 10^{-2}$ Do not penalise precision but must be to a minimum of two significant figures. Allow correct calculation using incorrect M_r. Correct answer without working scores this mark only. 1 $3(.00) \times 10^{-2}$ (c) 1 Theoretical mass = $2.50 \times 10^{-2} \times 179.8 = 4.50g$ (d) as long as 2.50×10^{-2} is the smaller of parts (b) and (c) (M1) Allow consequential answer from parts (b) and (c). Allow theoretical mass = (smaller of parts (b) and (c)) \times 179.8 If larger of parts (b) and (c) used, lose M1 but can score M2. Allow answers based on moles of reactant and product. 1 Yield = 3.31 × 100 / 4.50 = 73.6% (M2) Award this mark only if answer given to 3 significant figures. Correct answer without working scores this mark only, provided answer given to 3 significant figures. 1 Some left in solution / some lost during filtration (e) Do not allow 'incomplete reaction'. Do not allow 'reaction is reversible'. 1 (f) MnO₄⁻ will oxidise the iron(II) ion and the ethanedioate ion 1 MnO_4^{-} does not oxidise the Cu²⁺ ion / larger volume needed for iron(II) ethanedioate 1 [9]