M1.(a) (i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CH}_{3} \mathrm{COOH}$
Allow $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
Ignore $\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{C}$ in equation
(1)-methylethyl ethanoate OR

Propan-2-yl ethanoate
Ignore extra or missing spaces, commas or hyphens
(ii)

M4 for 3 arrows and lp
NO Mark for name of mechanism
M1 for lone pair on O and arrow to C or to mid-point of space between O and C
M2 for arrow from $\mathrm{C}=\mathrm{O}$ bond to O

- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than $\delta+$ on $\mathrm{C}=\mathrm{O}$ loses M2
- If Cl lost with $\mathrm{C}=\mathrm{O}$ breaking, max1 for M1

M3 for correct structure with charges (penalise wrong alcohol here) but lone pair on O is part of M4
Penalise $\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{C}$ in M3
M4 for lone pair on O and three arrows

- Only allow M4 after correct / very close M3
- M4 can be gained over more than one structure
- Ignore Cl- removing H^{+}
(b) (i)

Penalise covalent Na e.g. -O-Na
(ii) $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{COOCH}_{3}$

Allow $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2}$

M2.(a) (i) $\quad M_{\mathrm{r}} \mathrm{N}$-phenylethanamide $=135.0$

Theoretical yield $=135.0 \times 2(1.15 / 284.1)=1.09 \mathrm{~g}$

Answer recorded to 3 significant figures.
(ii) $\frac{0.89}{\text { Ans to (a) }} \times 100$
$=81.4$ \%
Mark consequentially to (a)
Allow 81 to 82
(b) (i) Dissolve the product in the minimum volume of water / solvent (in a boiling tube / beaker)

If dissolving is not mentioned, $C E=0 / 4$

Hot water / solvent
Steps must be in a logical order to score all 4 marks

Allow the solution to cool and allow crystals to form.

Filter off the pure product under reduced pressure / using a Buchner funnel and side arm flask

Ignore source of vacuum for filtration (electric pump, water

> pump, etc.)
(ii) Measure the melting point

Use of melting point apparatus or oil bath

Sharp melting point / melting point matches data source value
(iii) Any two from:

Product left in the beaker or glassware
Sample was still wet
Sample lost during recrystallisation.
Do not allow "sample lost" without clarification.
(c) An identified hazard of ethanoyl chloride
E.g. "Violent reaction", "harmful", "reacts violently with water" Do not allow "toxic", "irritant" (unless linked with HCl gas).

HCl gas / fumes released / HCl not released when ethanoic anhydride used

M3.(a) (nucleophilic) addition-elimination
Not electrophilic addition-elimination

attack on C+
M3 for correct structure with charges but lone pair on O is part of M4
M4 (for three arrows and lone pair) can be shown in more than one structure
(b) The minimum quantity of hot water was used:

To ensure the hot solution would be saturated / crystals would form on cooling

The flask was left to cool before crystals were filtered off:
Yield lower if warm / solubility higher if warm

The crystals were compressed in the funnel:
Air passes through the sample not just round it
Allow better drying but not water squeezed out

A little cold water was poured through the crystals:

To wash away soluble impurities
(c) Water

Do not allow unreacted reagents

Press the sample of crystals between filter papers
Allow give the sample time to dry in air
(d) $\quad M_{r}$ product $=135.0$

$$
\text { Expected mass }=5.05 \times \frac{\frac{135.0}{93.0}}{}=7.33 \mathrm{~g}
$$

Percentage yield $=\frac{4.82}{7.33} \times 100=65.75=65.8(\%)$

Answer must be given to this precision
(e)

OR

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}+\mathrm{NO}_{2}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{NHCOCH}_{3}\right) \mathrm{NO}_{2}+\mathrm{H}^{+}
$$

(f) Electrophilic substitution
(g) Hydrolysis
(h) $\mathrm{Sn} / \mathrm{HCl}$

