M1.(a) (i) 2-hydroxypropanoic acid OR 2-hydroxypropan(-1-)oic acid

Do not penalise different or missing punctuation or extra spaces.
Spelling must be exact and order of letters and numbers as here.
Can ignore-1- before -oic, but penalise any other numbers here.
(ii) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$

Allow $4 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
OR
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Allow $2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
(b) (i) Nucleophilic addition

M4 for lp, arrow and H+

- M1 Ip and minus must be on C
- M1 and M4 include lone pair and curly arrow.
- M2 not allowed independent of M1, but allow following some attempt at attack on carbonyl C
- allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses M2
- M3 is for correct structure including minus sign but lone pair is part of M4
- Allow arrow in M4 to H of $\mathrm{H}-\mathrm{CN}$ with arrow forming cyanide ion.
(ii) Equal mixture of enantiomers / (optical) isomers
(iii) (Plane) polarized light

If missing no further mark.
(Polarised light) rotated by single enantiomer but unaffected by racemate

Both needed; not allow bend, twist etc.
(c) (i) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$

Not ambiguous mol formulae for product - must show COONa or $\mathrm{CO}_{2} \mathrm{Na}$ or COO or CO_{2}^{-}
(ii) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \boldsymbol{O R} \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
$\mathrm{pH}=3.86$
Allow more than 2 decimal places but not fewer.
(iii) M1 buffer

Ignore acidic but penalise alkaline or basic.

Any two out of the three marks M2, M3 \& M4

M2 Large lactate concentration in buffer
OR sodium lactate completely ionised
M3 added acid reacts with / is removed by lactate ion or A^{-}or sodium lactate or salt
OR equation $\mathrm{H}^{+}+\mathrm{A}^{-} \rightarrow \mathrm{HA}$ Ignore reaction of H^{+}with OH^{-} Ignore reference to equilibrium unless it is shown.

M4 ratio [HA] / [A-] stays almost constant Ignore H^{+}or pH remains constant.
(d) (i)

No marks if ester link missing
Correct ester link allow -COO-

NB Correct answer scores 2
Ignore n here (compare with (d)(iv).
Ignore brackets

OR

All rest correct with trailing bonds If OH or COOH on either or both ends, lose one, ie dimer scores 1
If more than two repeating units, lose 1
(ii) (Poly)ester ie allow ester

Not terylene.
Ignore spaces and brackets in answer.
(iii)

Allow any cyclic $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{4}$
(iv)

$O R$

Penalise n here (compare with (d)(i) Ignore brackets.
Not allow Ph for phenyl.
(v) In landfill, no air or UV, to assist decay OR not enough water or moisture (to hydrolyse polyester)

Allow landfill has / contains:
no or few bacteria / micro-organisms / enzymes compared with compost heap
OR less oxygen
OR lower temperature.

M2. (a) (i)

Allow -CONH- or - COHN -
Mark two halves separately
lose 1 each for missing trailing bonds at one or both ends or error in peptide link or either or both of H or OH on ends

Not allow -($\left.\mathrm{C}_{6} \mathrm{H}_{12}\right)-$ Ignore n
(ii) M1 in polyamides - H bonding

M2 in polyalkenes - van der Waals forces
Penalise forces between atoms or van der Waals bonds

M3 Stronger forces (of attraction) in polyamides Or H bonding is stronger (must be a comparison of correct forces to score M3)

Do not award if refer to stronger bonds
(b) (i) (nucleophilic) addition elimination

Not allow $\mathrm{N}-\mathrm{H}_{2}$

Minus sign on NH_{2} loses M1
M2 not allowed independent of M1, but allow M1 for correct attack on C+

+ rather than δ + on $\mathrm{C}=\mathrm{O}$ loses M2
If Cl lost with $\mathrm{C}=\mathrm{O}$ breaking, max 1 for M1
M3 for correct structure with charges but Ip on O is part of M4 only allow M4 after correct/ very close M3
For M4, ignore NH_{3} removing H^{+}but lose M4 for Cl removing H^{+}in mechanism, but ignore HCl as a product
(ii) N-methylpropanamide

Not N-methylpropaneamide
(c)

Allow - CONH - or $-\mathrm{COHN}-$
(d) (i) 2-amino-3-hydroxypropanoic acid
(ii)

Must be salts of aspartic acid
allow $-\mathrm{CO}_{2}^{-}$
allow $\mathrm{NH}_{2}-$
(iii) Penalise use of aspartic acid once in d (iii) and d (iv)

$$
\begin{aligned}
& \text { allow }-\mathrm{CO}_{2} \mathrm{H} \\
& \text { allow }{ }^{\mathrm{NH}_{3}-} \\
& \text { don't penalize position of + on } \mathrm{NH}_{3}
\end{aligned}
$$

(iv) Penalise use of aspartic acid once in d (iii) and d (iv)

(Br^{-})
allow - CO_{2}^{-}
must show $C-N$ bond
don't penalize position of + on $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$

M3. (a) Benzene-1,2-dicarboxylic acid
Allow 1,2-benzenedicarboxylic acid
(b)

Must show all bonds including trailing bonds Ignore n
(c) (i) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

NB Two ethanols
$\mathrm{H}_{2} \mathrm{O}$
but only one water
(ii) 6 or six

1
(iii)

Ignore overlap with O to the left or H to the right, but must only include this one carbon. either or allow both (as they are identical)
(d)

$\mathrm{OCH}_{2} \mathrm{CH}_{3}$

[DEP] ${ }^{*}$

OR $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}\right]^{+} \rightarrow\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{3}\right]^{+}+\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right]^{-}$

Allow + on C or O in
(e) (i) Rate $=k[D E P]$

Must have brackets but can be ()
(ii) Any two of

- experiment repeated/continued over a long period
- repeated by independent body/other scientists/avoiding bias
- investigate breakdown products
- results made public

Not just repetition
Ignore animal testing

