M1. (a) 3-hydroxypropanoic acid
allow 3-hydroxypropionic acid must be correct spelling
(b) (i) must show trailing bonds

or can start at any point in the sequence, e.g.

not allow dimer
allow $-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-$
or $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{COO}-$
ignore () orn
$N B$ answer has a total of 6 carbons and 4 oxygens
(ii) condensation (polymerisation)

Allow close spelling
(c) (i) $\mathrm{C}=\mathrm{C}$ or carbon-carbon double bond
(ii)

must show ALL bonds including $\mathrm{O}-\mathrm{H}$
(iii) must show trailing bonds

allow polyalkene conseq on their c(ii) ignore n
(d)

allow $\mathrm{NH}_{3}{ }^{+}$-
allow COO^{-}
(e) (i)

In (e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly
NB two carboxylate groups
Allow COONa or $\mathrm{COO}^{-} \mathrm{Na}^{+}$but not covalent bond to Na allow $\mathrm{NH}_{2}-$
(ii)

OR

In (e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly
NB two ester groups
allow $\mathrm{NH}_{2}-$ or ${ }^{+} \mathrm{NH}_{3}-$
(iii)

In 4(e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly allow anhydride formation on either or both COOH groups (see below) with or without amide group formation

(f) M1 phase or eluent or solvent (or named solvent) is moving or mobile

M2 stationary phase or solid or alumina/silica/resin

M3 separation depends on balance between solubility or affinity (of compounds) in each phase
OR
different adsorption or retention

OR

(amino acids have) different R_{f} values
OR
(amino acids) travel at different speeds or take different times

M2. (a) (i) Nucleophilic substitution

M1 must show an arrow from the lone pair of electrons on the oxygen atom of the negatively charged hydroxide ion to the central C atom.
M2 must show the movement of a pair of electrons from the $\mathrm{C}-\mathrm{Br}$ bond to the Br atom. Mark M2 independently.

Penalise M1 if covalent KOH is used
Penalise M2 for formal charge on C or incorrect partial charges
Penalise once only for a line and two dots to show a bond.
Max 1 mark for the mechanism for the wrong reactant and/or "sticks"
Ignore product
Award full marks for an $\mathrm{S}_{\mathrm{N}} 1$ mechanism in which M 1 is the attack of the hydroxide ion on the intermediate carbocation.
(ii) 2-bromopropane ONLY
(iii) Polar $\mathrm{C}-\mathrm{Br} \boldsymbol{O R}$ polar carbon-bromine bond $\boldsymbol{O R}$ dipole on $\mathrm{C}-\mathrm{Br}$ OR $\delta+(\delta-)$
C atom of carbon-bromine bond is $\delta+/$ electron deficient $O R \underline{\mathrm{C}-\mathrm{Br}}$
(Credit carbon-halogen bond as an alternative to
carbon-bromine bond)
It must be clear that the discussion is about the carbon atom of the $\mathrm{C}-\mathrm{Br}$ bond. NOT just reference to a polar molecule. Ignore X for halogen
(b) Elimination

Credit "base elimination" but NOT "nucleophilic elimination" No other prefix.

M1 must show an arrow from the lone pair on oxygen of a negatively charged hydroxide ion to the correct H atom
M2 must show an arrow from the correct $\mathrm{C}-\mathrm{H}$ bond to the $\mathrm{C}-\mathrm{C}$ bond and should only be awarded if an attempt has been made at M1 M3 is independent.
$\frac{\text { Mechanism }}{\text { Penalise M1 if covalent } \mathrm{KOH}}$
Penalise M3 for formal charge on C or incorrect partial
charges
Penalise once only for a line and two dots to show a bond.
Max 2 marks for the mechanism for wrong reactant and/or
"sticks"
Ignore product

Award full marks for an E1 mechanism in which M2 is on the correct carbocation.
(c) Any one condition from this list to favour elimination;

Apply the list principle

- alcohol(ic)/ethanol(ic) (solvent)
- high concentration of $\mathrm{KOH} /$ alkali/hydroxide $\mathbf{O R}$ concentrated KOH/hydroxide

Ignore "aqueous"

- high temperature or hot or heat under reflux or $\mathrm{T}=78$ to $100^{\circ} \mathrm{C}$ Ignore "excess"
(d) (i) Addition (polymerisation) ONLY

Penalise "additional"
(ii) But-2-ene ONLY (hyphens not essential) Ignore references to cis and trans or E/Z Ignore butane

M3. (a) (i)

(ii)

(iii) hydrogen bonding (do not allow H -bonding) QWC do not penalise any error twice.
(b) (i)

(ii)

(iii) Isomer must be saturated or must not contain a double bond
(c)

(d) (i) heat/reflux with aqu NaOH
poly(alkene) is inert/ no reaction
polyamide is hydrolysed (or undergoes hydrolysis) to form acid salt and alcohol QWC
(ii) e.g combustion
heat energy produced
toxic gases produced

M4. (a) (i) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$

Addition or radical (QoL)
(ii) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ or with no brackets
butan(e)-2,3-diol or 2,3-butan(e)diol

2,3-dimethylbutan(e)dioic acid
2,3-dimethylbutan(e)dioyl chloride ignore -1,4-
condensation (QoL)
(iii) NaOH or HCl etc or $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Allow conc sulphuric/nitric
NOT water nor acidified water nor weak acids
(b) Structure 1

Allow -CONH- and -COHN-
Allow zwitterions
NOT polypeptides/repeating units

Structure 2 either of

(c) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
allow-Cl, -I
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$
(iii) (nucleophilic) substitution or from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ if reduction written here, no further marks
further substitution/reaction occurs or other products are formed Allow reduction forms only one product
one of
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{4} \mathrm{~N}^{+} \mathrm{Br}$
Allow salts including $\mathrm{NH}_{4} \mathrm{Br}$
Allow HBr

