M1.(a) (i) 2-hydroxypropanoic acid OR
2-hydroxypropan(-1-)oic acid
Do not penalise different or missing punctuation or extra spaces.
Spelling must be exact and order of letters and numbers as here.
Can ignore-1- before -oic, but penalise any other numbers here.
(ii) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$

Allow $4 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
OR
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Allow $2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
(b) (i) Nucleophilic addition

M4 for lp, arrow and H+

- M1 Ip and minus must be on C
- M1 and M4 include lone pair and curly arrow.
- M2 not allowed independent of M1, but allow following some attempt at attack on carbonyl C
- allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses M2
- M3 is for correct structure including minus sign but lone pair is part of M4
- Allow arrow in M4 to H of $\mathrm{H}-\mathrm{CN}$ with arrow forming cyanide ion.
(ii) Equal mixture of enantiomers / (optical) isomers
(iii) (Plane) polarized light

If missing no further mark.
(Polarised light) rotated by single enantiomer but unaffected by racemate

Both needed; not allow bend, twist etc.
(c) (i) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$

Not ambiguous mol formulae for product - must show COONa or $\mathrm{CO}_{2} \mathrm{Na}$ or COO^{-}or CO_{2}^{-}
(ii) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \boldsymbol{O R} \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
$\mathrm{pH}=3.86$
Allow more than 2 decimal places but not fewer.
(iii) M1 buffer

Ignore acidic but penalise alkaline or basic.

Any two out of the three marks M2, M3 \& M4

M2 Large lactate concentration in buffer
OR sodium lactate completely ionised
M3 added acid reacts with / is removed by lactate ion or A^{-}or sodium lactate or salt
OR equation $\mathrm{H}^{+}+\mathrm{A}^{-} \rightarrow \mathrm{HA}$ Ignore reaction of H^{+}with OH^{-} Ignore reference to equilibrium unless it is shown.

M4 ratio [HA] / [A-] stays almost constant Ignore H^{+}or pH remains constant.
(d) (i)

No marks if ester link missing
Correct ester link allow -COO-

NB Correct answer scores 2
Ignore n here (compare with (d)(iv).
Ignore brackets

OR

All rest correct with trailing bonds If OH or COOH on either or both ends, lose one, ie dimer scores 1
If more than two repeating units, lose 1
(ii) (Poly)ester ie allow ester

Not terylene.
Ignore spaces and brackets in answer.
(iii)

Allow any cyclic $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{4}$
(iv)

$O R$

Penalise n here (compare with (d)(i) Ignore brackets.
Not allow Ph for phenyl.
(v) In landfill, no air or UV, to assist decay OR not enough water or moisture (to hydrolyse polyester)

Allow landfill has / contains:
no or few bacteria / micro-organisms / enzymes compared with compost heap
OR less oxygen
OR lower temperature.

Allow $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
Allow name propan-2-ol
Penalise contradiction of name and structure
Step $1 \mathrm{NaBH}_{4}$ or LiAlH_{4}
$\mathrm{Zn} / \mathrm{HCl}$ or $\mathrm{Sn} / \mathrm{HCl}$
or $\mathrm{H}_{2} / \mathrm{Ni}$ or $\mathrm{H}_{2} / \mathrm{Pt}$
Ignore name if formula is correct
ignore solvent
ignore acid (for 2nd step) but penalise acidified NaBH_{4}
Apply list principle for extra reagents and catalysts.
M1
(nucleophilic) addition
Addition (not nucleophilic)
Penalise electrophilic
Ignore reduction

Step 2 conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ or conc $\mathrm{H}_{3} \mathrm{PO}_{4}$ or $\mathrm{Al}_{2} \mathrm{O}_{3}$
Apply list principle for extra reagents and catalysts.

Independent from M3
penalise nucleophilic or electrophilic ignore dehydration

Step 3 HBr

Apply list principle for extra reagents and catalysts.
M5
electrophilic addition
Independent from M5
M6
1

M3.(a) $\mathrm{Sn} / \mathrm{HCl}$ OR $\mathrm{Fe} / \mathrm{HCl}$ not conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ nor any HNO_{3}
Ignore subsequent use of NaOH
Ignore reference to Sn as a catalyst with the acid
Allow H_{2} (Ni / Pt) but penalise wrong metal
But NOT NaBH $\mathrm{NiAlH}_{4} \mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Equation must use molecular formulae

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}+12[\mathrm{H}]$
$12[\mathrm{H}]$ and $4 \mathrm{H}_{2} \mathrm{O}$ without correct molecular formula scores 1 out of 2

Allow $+6 \mathrm{H}_{2}$ if $\mathrm{H}_{2} /$ Ni used
Allow -CONH - or $-\mathrm{COHN}-$ or $-\mathrm{C}_{6} \mathrm{H}_{4}-$

Mark two halves separately: lose 1 each for

- error in diamine part
- error in diacid part
- error in peptide link
- missing trailing bonds at one or both ends
- either or both of H or OH on ends Ignore n
(b) $\quad \mathrm{H}_{2}(\mathrm{Ni} / \mathrm{Pt})$ but penalise wrong metal NOT Sn / HCl, NaBH_{4} etc.
CH_{2}

In benzene 120°

In cyclohexane $109^{\circ} 28$ or $1091_{2}{ }^{\circ}$

Allow $108^{\circ}-110^{\circ}$

If only one angle stated without correct qualification, no mark awarded
(c) (i) Nucleophilic addition

- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses M2
- M3 is for correct structure including minus sign but lone pair is part of M4
- Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
- M1 and M4 include Ip and curly arrow
- Allow M4 arrow to \underline{H} in $\mathrm{H}_{2} \mathrm{O}$ (ignore further arrows)
(ii) M1 Planar $\mathrm{C}=\mathrm{O}$ (bond / group)

Not just planar molecule

M2 Attack (equally likely) from either side Not just planar bond without reference to carbonyl

M3 (about product): Racemic mixture formed OR 50:50 mixture or each enantiomer equally likely

M4.(a) Yes, because it is oxidised to ethanal / $\mathrm{CH}_{3} \mathrm{CHO}$
OR it is oxidised to a compound that contains $\mathrm{CH}_{3} \mathrm{CO}$ group
Ignore 'primary alcohols are oxidised to aldehydes'.
Need 'yes' and an explanation to be awarded the mark.
(b) $\quad M_{\mathrm{r}} \mathrm{CHI}_{3}=393.7$ (M1)

Allow if clearly shown in a calculation.
Allow 394

Moles $\mathrm{CHI}_{3}=10 / 393.7=2.54 \times 10^{-2}$ (M2)
Allow a consequential answer on an incorrect M_{r}.
2.54×10^{-2} scores M1 and M2.

Moles $\mathrm{I}_{2}=7.62 \times 10^{-2}(\mathrm{M} 3)$
Allow $3 \times$ M2.

Mass $\mathrm{I}_{2}=7.62 \times 10^{-2} \times 253.8=19.34 \mathrm{~g}(\mathrm{M} 4)$
Allow M3 $\times 253.8$ or M3 $\times 254$

Scaling $19.34 / 0.832=23.2 \mathrm{~g}$ (M5)
Allow M4 / 0.832
Lose this mark if the answer is not given to 3 significant figures.
Answer without working scores M5 only.
Allow any chemically correct alternative method.
Calculations which combine several steps in one expression can score the marks for all of these individual steps.
(c) Remove soluble impurities

Allow 'remove excess sodium hydroxide / iodine'.
Allow 'remove excess sodium methanoate / sodium iodide'.
Allow 'remove excess reagents'.
(d) Will not dissolve solid / solid is insoluble in water

Allow 'will not react with solid'.

