M1.(a) (i) Green Ignore shades of green.
(ii) Excess acidified potassium dichromate(VI)

Reflux (for some time)

In the diagram credit should be given for

- a vertical condenser

Lose M3 and M4 for a distillation apparatus.

- an apparatus which would clearly work

Do not allow this mark for a flask drawn on its own.
Penalise diagrams where the apparatus is sealed.
(iii) Distillation

Immediately (the reagents are mixed)
(b) Keep away from naked flames

Allow heat with water-bath or heating mantle.
If a list is given ignore eye protection, otherwise lose this mark.
(c) (i) Tollens' or Fehling's reagents Incorrect reagent(s) loses both marks. Accept mis-spellings if meaning is clear.

Silver mirror / red ppt. formed
Accept 'blue to red' but not 'red' alone.
(ii) Sodium carbonate (solution) / Group II metal

Allow indicator solutions with appropriate colours.
Accept any named carbonate or hydrogen carbonate.

Effervescence / evolves a gas
Accept 'fizzes'.
(d) Propanoic acid

If this mark is lost allow one mark if there is reference to stronger intermolecular forces in the named compound.
Lose M1 and M3.

Contains hydrogen bonding

Some comparison with other compounds explaining that the intermolecular forces are stronger in propanoic acid

M3. (a) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{O}+\mathrm{AlCl}^{-}$
equation (1)
penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside []
penalise wrong curly arrow in the equation or lone pair on AlCl_{3} else ignore

Electrophilic substitution
NOT F/C acylation

(b) Nucleophilic addition

NOT reduction

M3

M2 not allowed independent, but can allow M1 for attack of H on C+ formed
(c) dehydration or elimination
(conc) $\mathrm{H}_{2} \mathrm{SO}_{4}$ or (conc) $\mathrm{H}_{3} \mathrm{PO}_{4}$
allow dilute and $\mathrm{Al}_{2} \mathrm{O}_{3}$
Do not allow iron oxides

1
[14]

M4. (a) (i) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}$ OR
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{3}+\mathrm{H}^{+}$
allow $\mathrm{C}_{2} \mathrm{H}_{5}$
penalise $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}$
allow + on C or O in equation

Phenylpropanone
OR ethylphenylketone OR phenylethylketone
Ignore 1 in formula, but penalise other numbers
AlCl_{3}
can score in equation
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}^{-}$
allow $\mathrm{C}_{2} \mathrm{H}_{5}$ allow + on C or O in equation

$$
\mathrm{AlCl}_{4}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{AlCl}_{3}+\mathrm{HCl}
$$

(ii) electrophilic substitution can allow in (a)(i) if no contradiction

M1 arrow from circle or within it to C or to + on C horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C1
M2 penalise $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}$ (even if already penalized in (a)(i))

M3 arrow into hexagon unless Kekule
allow M3 arrow independent of M2 structure ignore base removing H in M3
(b) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{HCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$ OR aldehyde must be -CHO brackets optional

2-hydroxybutanenitrile OR 2-hydroxybutanonitrile no others
(ii) nucleophilic addition

$$
\begin{aligned}
& \begin{array}{l}
\text { M1 includes Ip and arrow to Carbonyl } \mathrm{C} \text { and minus charge } \\
\text { (on either } \mathrm{C} \text { or } \mathrm{N} \text {) } \\
\text { Not allow } \mathrm{M} 2 \text { before } \mathrm{M} 1, \text { but allow } \mathrm{M} 1 \text { to } \mathrm{C}^{+} \text {after non-scoring } \\
\text { lgnore } \delta+\text { arrow } \delta \text { on carbonyl group, but if wrong way round or } \\
\text { full }+ \text { charge on } \mathrm{C} \text { lose } \mathrm{M} 2 \\
\mathrm{M} 3 \text { for correct structure including minus sign. Allow } \mathrm{C}_{2} \mathrm{H}_{5} \\
M 4 \text { for Ip and curly arrow to } \mathrm{H}^{+}
\end{array}
\end{aligned}
$$

(iii) (propanone) slower $\boldsymbol{O R}$ propanal faster
inductive effects of alkyl groups
OR
C of $\mathrm{C}=\mathrm{O}$ less $\delta+$ in propanone
OR
alkyl groups in ketone hinder attack
OR
easier to attack at end of chain
if wrong, no further marks

M5. (a) nucleophilic addition

(b) (i) 2-hydroxybutanenitrile
(ii)

(allow 1 for amide even if not $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}$, i.e. RCONH_{2})
(if not amide, allow one for any isomer of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}$ which shows geometric isomerism)
(c) (i)

(ii)

(iii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}$

