**M1.**B [1] **M2.**B [1] **M3.**C [1] **M4.**B [1] **M5.**B [1] **M6.**C [1] **M7.**B [1] **M8.**D [1] **M9.**D

**M10**.A

[1]

**M11.**D

[1]

M12. (a) Pentan-2-one

1

(b) (i)  $1680 - 1750 \text{ (cm}^{-1}\text{)}$ 

1

(ii)  $3230 - 3550 \text{ or } 1000 - 1300 \text{ (cm}^{-1})$ 

1

(iii) 4

1

(c)

| Reagent       | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> /H <sup>+</sup> | KMnO₄/H⁺        |               | CH₃COOH/<br>H₂SO₄ | 1 |
|---------------|---------------------------------------------------------------|-----------------|---------------|-------------------|---|
| with <b>C</b> | no reaction                                                   | no reaction     | no reaction   | no reaction       | 1 |
| with <b>D</b> | goes green                                                    | goes colourless | effervescence | smell             | 1 |

(penalise incomplete reagent e.g.  $K_2Cr_2O_7$  or  $Cr_2O_7^2$ -/ $H^+$  then mark on)

(d)

| Reagent       | Tollens  | Fehlings or Benedicts |
|---------------|----------|-----------------------|
| with <b>E</b> | silver   | red ppt or goes red   |
|               | (mirror) | (not red solution)    |
|               |          |                       |

1 1

[1]

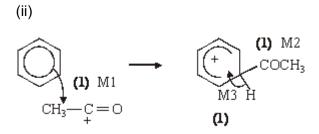
#### M14.(a) Mechanism

Allow C<sub>3</sub>H<sub>7</sub> if structure shown elsewhere penalise HCN splitting if wrong

Name of product: 2-hydroxypenta(neo)nitrile (1)

or 1-cyanobutan-1-ol

5


## (b) Mechanism

$$(CH_3CH_2) - C - CI \longrightarrow CH_3CH_2 -$$

Name of organic product: methylpropanoate (1)

5

(c) (i) ([) CH<sub>3</sub>CO (])<sup>+</sup> (1)



**Notes** 

(abc) extra curly arrows are penalised

- (a) be lenient on position of negative sign on : CN- but arrow must come from lp
- (a)/(b) C alone loses M2 but can score M1 for attack on C+, similarly C CI
- (a) allow 2-hydroxypentanonitrile or 2-hydroxypenta(ne)nitrile ... pentylnitrile
- (b) in M4, allow extra: Cl⁻ attack on H, showing loss of H⁺
- (c) (i) allow formula in an "equation" (balanced or not) be lenient on the position of the + on the formula
  - (ii) for M1 the arrow must go to the C or the + on the C don't be too harsh about the horseshoe, but + must not be close to the saturated CM3 must be final step not earlier; allow M3 even if structure (M2) is wrong

[14]

4

#### Organic points

(1) <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

(2) Structures

penalise sticks (i.e.  $-\mathbb{C}$  ) once per paper

### Penalise once per paper

$$\begin{array}{ccc} \underline{\text{allow}} & \text{CH}_3 - \text{or} & -\text{CH}_3 \\ \text{or} & \text{H}_3\text{C} - \end{array} \quad \text{or} \quad \text{CH}_3$$

# **M15.** (a) $K_2Cr_2O_7/H_2SO_4$ reuced by

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH (1)

oxidised to  $CH_3(CH_2)_2CHO$  (1) and  $CH_3(CH_2)_2COOH$  (1)

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO (1)

oxidised to CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>COOH (1)

Equation:  $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$  (1)

Note: Deduct one if all three compounds given as reducing

6

3

agents.

(b) Tollens' reduced by CH<sub>3</sub>CH<sub>2</sub>CHO (1)

oxidised to CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>COOH (1)

Equation  $[Ag(NH_3)_2]^+ + e^- \rightarrow Ag + 2NH_3$  (1)

(c) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH (1)

Product CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OOCCH<sub>3</sub> (1)

Page 6

(CH<sub>3</sub>)<sub>3</sub>COH

Product (CH<sub>3</sub>)<sub>3</sub>COOCCH<sub>3</sub> (1)

4

2

(d) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH has five peaks (1)

(CH<sub>3</sub>)<sub>3</sub>COH has two peaks (1)

[15]

# **M16.** (a) (i) propyl methanoate **(1)** not propanyl

- A wrong reagent or no reagent scores zero
- An incomplete reagent such as silver nitrate for Tollens, or potassium dichromate loses the reagent mark, but can get both observation marks
- penalise observations which just say colour change occurs or only state starting colour
- (ii) Reagent: NaHCO<sub>3</sub> (1)
  Observation with **C**: no reaction (1)
  Observation with **D**: effervescence (1)
  for **C** and **D** NOT Tollens

| Test                  | an identified<br>(hydrogen)<br>carbonate | acidified<br>K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> | acidified<br>KMnO₄ | correct<br>metal             | UI or stated indicator                 | PCI₅          |
|-----------------------|------------------------------------------|------------------------------------------------------------|--------------------|------------------------------|----------------------------------------|---------------|
| Observation with C    | no reaction                              | goes green                                                 | goes<br>colourless | no reaction                  | no change                              | no reaction   |
| observation<br>with D | bubbles or CO <sub>2</sub>               | no change                                                  | no change          | bubbles or<br>H <sub>2</sub> | red or correct<br>colour<br>pH 3 – 6.9 | (misty) fumes |

4

- (b) (i) Reagent: pentan-2-one (1)
  or 2-pentanone
  but not pent-2-one or pentyl
  - (ii) Reagent: Tollen's or Fehling's (1)

Observation with E: no reaction (1)

Observation with F: silver mirror or red ppt (1)

for **E** and **F** 

| Test                  | Tollens     | Fehlings or<br>Benedicts       | iodoform or<br>I₂/NaOH | acidified<br>K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> | Schiff's    |
|-----------------------|-------------|--------------------------------|------------------------|------------------------------------------------------------|-------------|
| observation with<br>E | no reaction | no reaction                    | yellow (ppt)           | no change                                                  | no reaction |
| observation with F    |             | red or ppt<br>not red solution | no reaction            | goes green                                                 | goes pink   |

4

$$CH_3CH_2$$
— $C$ — $CHO$ 
 $CH_3$ 
 $CH_3$ 

must be aldehyde. Allow  $C_2H_5$  for  $CH_3CH_2$  otherwise this is the only answer

1

[9]