M1.(a) (i)

(ii)

Allow $-\mathrm{NH}_{3}^{+}$and ${ }^{+} \mathrm{NH}_{3}-$
(iii) 2-amino-3-hydroxybutanoic acid

Ignore 1 in butan-1-oic acid
Do not penalise commas or missing hyphens
Penalise other numbers
(iv)

Allow $-\mathrm{NH}_{3}{ }^{+}$and ${ }^{+} \mathrm{NH}_{3}$ -
(b) (i) Condensation
(ii) propane-1,3-diol

Must have e
Allow 1,3-propanediol
(c) (i) Addition

Not additional
(ii)

Allow monomers drawn either way round
Allow bond to F in CF_{3}

OR

(d) c

If wrong, $C E=0$

(ii) NOTE - Two marks for this clip M1 for alanine section bonded through N M2 for alanine section bonded through C But penalise error in proline ring

Allow MAX 1 for correct tripeptide in polymer structure
(b) (i) 3-methylpent-2-ene

Ignore E-Z, commas, spaces or missing hyphens
(ii) 4-amino-3-methylbutanoic acid

Ignore commas, spaces or missing hyphens
(iii)

(iv) Non polar OR no polar groups / bonds (for attack by water / acids / alkalis / nucleophiles or for hydrolysis)

C-C bonds are strong

M3. (a) 3-hydroxypropanoic acid
allow 3-hydroxypropionic acid must be correct spelling
(b) (i) must show trailing bonds
 or can start at any point in the sequence, e.g.

not allow dimer
allow $-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-$
or $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{COO}-$
ignore () orn
NB answer has a total of 6 carbons and 4 oxygens
(ii) condensation (polymerisation)
(c) (i) $\mathrm{C}=\mathrm{C}$ or carbon-carbon double bond
(ii)

must show ALL bonds including $\mathrm{O}-\mathrm{H}$
(iii) must show trailing bonds

allow polyalkene conseq on their c(ii) ignore n
(d)

allow $\mathrm{NH}_{3}{ }^{+}$-
allow COO^{-}
(e) (i)

In (e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly
NB two carboxylate groups
Allow COONa or $\mathrm{COO} \mathrm{Na}^{+}$but not covalent bond to Na allow $\mathrm{NH}_{2}-$
(ii)

OR

In (e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly
NB two ester groups
allow $\mathrm{NH}_{2}-$ or ${ }^{+} \mathrm{NH}_{3}-$
(iii)

In 4(e), do not penalise a slip in the number of carbons in the $-\mathrm{CH}_{2} \mathrm{CH}_{2}$ - chain, but all must be bonded correctly allow anhydride formation on either or both COOH groups (see below) with or without amide group formation

(f) M1 phase or eluent or solvent (or named solvent) is moving or mobile

M2 stationary phase or solid or alumina/silica/resin

M3 separation depends on balance between solubility or affinity (of compounds) in each phase OR different adsorption or retention OR (amino acids have) different R_{f} values OR
(amino acids) travel at different speeds or take different times

M4.(a)

(b)

(c)

Allow

(d) 2-amino-3-hydroxybutanoic acid
(e)

M5.(a)

Allow $-\mathrm{NH}_{3}{ }^{+}$and ${ }^{+} \mathrm{NH}_{3}-$
(b)

Allow protonated form, i.e. $-\mathrm{NH}_{3}^{+}$or ${ }^{+} \mathrm{NH}_{3}-$
(c)

Allow $-\mathrm{CO}_{2}^{-}$
(d)

Allow zwitterion with any COO^{-}
Allow use of "wrong" COOH

M6.(a) 2,6-diaminohexanoic acid
Ignore additional , or - or spaces.
(b) (i)

$N B$ both N must be protonated.
Allow $-\mathrm{NH}_{3}{ }^{+}$allow $\mathrm{CO}_{2} \mathrm{H}$ Allow $-{ }_{3} \mathrm{H}_{3} \mathrm{~N}$.
Penalise - $\mathrm{C}_{4} \mathrm{H}_{8}$ - here.
(ii)

$\left(\mathrm{Na}^{+}\right)$
Allow CO_{2}^{-}.
Allow $-\mathrm{H}_{2} \mathrm{~N}$.
Allow -COONa but penalise $\mathrm{O}-\mathrm{Na}$ bond shown.
(iii)

Allow $\mathrm{CO}_{2} \mathrm{CH}_{3}$.
Allow $-\mathrm{NH}_{3}^{+}$or $-\mathrm{H}_{2} \mathrm{~N}$.
(c)

1 for displayed formula of fragment ion.
1 for molecular ion of alanine AND radical.
Allow molecular ion without brackets and fragment ion in brackets with outside +.
Allow dot anywhere on radical.
Allow $\left[\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{NO}_{2}\right]^{*}$ for molecular ion.
(d)

OR

OR

Dipeptide, not repeating unit /.
Allow $\mathrm{CO}_{2} \mathrm{H}$ Allow $-\mathrm{H}_{2} \mathrm{~N}$.
Allow -CONH-
(e) M1 In acid lysine has double positive or more positive charge

M7.(a) Wear plastic gloves:
Essential - to prevent contamination from the hands to the plate

Add developing solvent to a depth of not more than $1 \mathrm{~cm}^{3}$:
Essential - if the solvent is too deep it will dissolve the mixture from the plate

Allow the solvent to rise up the plate to the top:

Not essential - the R_{f} value can be calculated if the solvent front does not reach the top of the plate

Allow the plate to dry in a fume cupboard:

Essential - the solvent is toxic
Allow hazardous
(b) Spray with developing agent or use UV

Measure distances from initial pencil line to the spots (x)

Measure distance from initial pencil line to solvent front line (y)
R_{f} value $=x / y$
(c) Amino acids have different polarities

Therefore, have different retention on the stationary phase or different solubility in the developing solvent

