M1. (a) necleophilic addition;

M3 structure;
(be lenient on position of charge on $\mathrm{CN}-$) (M2 not allowed independent of M1, but allow M1 for correct attack on C+ if M2 show as independent first.) (+on C of $C=O$ loses $M 2$ but ignore $\delta+$ if correct) (M4 for arrow and lone pair (only allow for correct M3 or close))
(b) (i) $\underline{2}$-hydroxybutanoic acid
(ii)

geometric(al) or cis-trans
(c) (i)

(one unit only) (ignore brackets or n) (trailing bonds are
(ii) can be hydrolysed
OR
can be reacted with/attacked by acid/base/nucleophiles/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}$;
(d) (i)

(ii)

(iii) nucleophilic substitution;

M2. (a) 2-amino(e) propanoic acid (1)
(b) (i) molecules with same structure / structural formula (1) but with bonds (atoms or groups) arranged differently in space (3D) (1)
(ii) Plane polarised light (1)

Rotated (equally) in opposite directions (1)
(c)

allow $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COO}^{-}$
Penalise $\mathrm{NH}_{2}{ }^{-}$and OH^{-}once per paper but CH_{3} - is allowed

(d)

(1)

Not anhydrides; not repeating units
(e)

or $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOCH}_{3}$

M3. (a) ${ }^{2}$-chloropropanoic acid (1)
(b) $\delta 1.72$ Doublet \therefore next to CH (1) δ 4.44 Quartet \therefore next to $\mathrm{CH}_{3}(1)$
(c) Two triplets (1)
(d)

Allow $S_{N} 1$
(e) (i)

(1)

(1)
(ii)

(iii)

Or anhydride

M4. (a) (i) hexane-1,6-diamine or 1,6-diaminohexane (allow ammine) or 1,6 hexan(e)diamine (1)
(ii)
 Allow - CONH-
(b) (i)

(1)

(1)
peptide link essential : the rest is consequential on $b(i)$ (allow CONH)
allow anhy dride
(ii)

(c) (i) quaternary ammonium bromide salt (1)
(not ion, not compound)
Allow quarternery
(ii) Reagent: $\mathrm{CH}_{3} \mathrm{Br}$ or bromomethane (1)
penalise $\mathrm{CH}_{3} \mathrm{Cl}$ but allow excess for any halomethane
Condition: excess $\left(\mathrm{CH}_{3} \mathrm{Br}\right)(1)$
(iii) nucleophilic substitution (1)

M5. (a) (i)

(lgnore n or brackets, but trailing bonds are essential)
(ii) Addition or radical
(b) (i) 2-aminobutanoic (acid)
(ii)

(c) (i) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$
(ii)

(1,4-)butan(e)dioic (acid)
(allow succinic, but not dibutanoic nor butanedicarboxylic acid)
(iii) Can be hydrolysed / can react with acid or base or water / can react with nucleophiles

(1)
ignore Na^{+}unless covalently bonded
(ii)

must be dipeptide, not polymer nor anhydride allow -CONH- or -COHNallow zwitterion
(iii) hydrogen bonding (1)

Allow with dipole-dipole or v derWaals, but not dipole-dipole etc alone
(b) (i) Type of polymerisation: addition(al) (1)

allow n
(ii) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}(1) \mathrm{C}_{2} \mathrm{H}_{5}$
(iii)

