M1.(a) M1 (could be scored by a correct mathematical expression)

M1 $\Delta H = \sum \Delta H_f$ (products) $-\sum \Delta H_f$ (reactants)

OR a correct cycle of balanced equations

M2 =
$$5(-635) - (-1560)$$

= $-3175 + 1560$
(This also scores M1)

M3 = -1615 (kJ mol⁻¹) Award 1 mark ONLY for (+) 1615

Correct answer to the calculation gains all of **M1**, **M2** and **M3** Credit 1 mark for(+) 1615 (kJ mol⁻¹)

For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with V_2O_5 and 5CaO OR a clear statement of **M1** which could be in words and scores **only M1**

M4 Type of reaction is

- reduction
- redox
- (or accept) V₂O₅ / it / V(V) has been reduced
 In M4 not "vanadium / V is reduced"

M5 Major reason for expense of extraction – the answer must be about calcium

Calcium is produced / extracted by electrolysis

OR calcium is expensive to extract

OR calcium extraction uses electricity

OR calcium extraction uses large amount of energy

OR calcium is a (very) reactive metal / reacts with water or air

OR calcium needs to be extracted / does not occur native

QoL

Accept calcium is expensive "to produce" but not "to source, to get, to obtain, to buy" etc.

In **M5** it is neither enough to say that calcium is "expensive" nor that calcium "must be purified"

(b) M1
$$2AI + Fe_2O_3 \longrightarrow 2Fe + AI_2O_3$$

5

Ignore state symbols
Credit multiples of the equation

M2

(Change in oxidation state) 0 to (+)3

OR

(changed by) +3

In **M2** if an explanation is given it must be correct and unambiguous

2

(c)
$$M1$$

 $VCI_2 + H_2 \longrightarrow V + 2HCI$

In M1 credit multiples of the equation

M2 and M3

Two hazards in either order

- HCI / hydrogen chloride / hydrochloric acid is acidic / corrosive / toxic / poisonous
- Explosion risk with hydrogen (gas) OR H₂ is flammable
 For M2 / M3 there must be reference to hydrogen; it is not enough to refer simply to an explosion risk
 For M2 / M3 with HCl hazard, require reference to acid(ic) / corrosive / toxic only

М4

The only other product / the HCl is easily / readily removed / lost / separated because it is a gas OR will escape (or this idea strongly implied) as a gas OR vanadium / it is the only solid product (and is easily separated)
OR vanadium / it is a solid and the other product / HCl is a gas

In **M4** it is not enough to state simply that HCl is a gas, since this is in the question.

[11]

M2.(a)
$$C(s) + 2F_2(g) \longrightarrow CF_4(g)$$

State symbols essential

1

(b) Around carbon there are 4 bonding pairs of electrons (and no lone pairs)

1

Therefore, these repel equally and spread as far apart as possible

(c) $\Delta H = \sum \Delta_i H$ products $-\sum \Delta_i H$ reactants or a correct cycle

1

Hence =
$$(2 \times -680) + (6 \times -269) - (x) = -2889$$

1

$$x = 2889 - 1360 - 1614 = -85 \text{ (kJ mol}^{-1}\text{)}$$

1

Score 1 mark only for +85 (kJ mol⁻¹)

(d) Bonds broken = $4(C-H) + 4(F-F) = 4 \times 412 + 4 \times F-F$

Bonds formed = $4(C-F) + 4(H-F) = 4 \times 484 + 4 \times 562$ Both required

1

$$-1904 = [4 \times 412 + 4(F-F)] - [4 \times 484 + 4 \times 562]$$

$$4(F-F) = -1904 - 4 \times 412 + [4 \times 484 + 4 \times 562] = 632$$

1

$$F-F = 632 / 4 = 158 (kJ mol^{-1})$$

1

The student is correct because the F–F bond energy is much less than the C–H or other covalent bonds, therefore the F–F bond is weak / easily broken

Relevant comment comparing to other bonds (Low activation energy needed to break the F–F bond)

[10]

M3.(a) (i) 3Fe +
$$Sb_2S_3 \longrightarrow 3FeS + 2Sb$$

Or multiples.

Ignore state symbols.

(ii) Fe
$$\longrightarrow$$
 Fe²⁺ + 2e⁻

Ignore charge on the electron unless incorrect.

Or multiples.

Credit the electrons being subtracted on the LHS.

1

1

1

1

Ignore state symbols.

(b) (i)
$$Sb_2S_3 + 4.5O_2 \longrightarrow Sb_2O_3 + 3SO_2$$

Or multiples.

Ignore state symbols.

(ii) SO₃ or sulfur trioxide / sulfur (VI) oxide

Credit also the following ONLY.

H₂SO₄ or sulfuric acid.

OR

Gypsum / CaSO₄ or plaster of Paris.

(c) (i) M1 (could be scored by a correct mathematical expression)

Correct answer gains full marks.

11 $\Delta H_t = \Sigma \Delta H_t$ (products) $-\Sigma \Delta H_t$ (reactants)

OR a correct cycle of balanced equations / correct numbers of moles

Credit 1 mark for +104 (kJ mol⁻¹).

M2 =
$$2(+20) + 3(-394) - (-705) - 3(-111)$$

$$= 40 - 1182 + 705 + 333$$

$$= -1142 - (-1038)$$

(This also scores M1)

M3 = -104 (kJ mol⁻¹)

(Award 1 mark ONLY for + 104)

For other incorrect or incomplete answers, proceed as follows:

Page 5

- Check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks.
- If no AE, check for a correct method; this requires either a correct cycle with 3CO, 2Sb and 3CO₂ OR a clear statement of **M1** which could be in words and scores **only M1**.

(ii) It / Sb is not in its standard state

OR

Standard state (for Sb) is solid / (s)

OR

(Sb) liquid is not its standard state

Credit a correct definition of standard state as an alternative to the words 'standard state'.

QoL

(iii) Reduction OR reduced OR redox

1

1

3

- (d) Low-grade ore extraction / it
 - uses (cheap) <u>scrap / waste iron / steel</u>
 - is a single-step process

uses / requires less / low(er) energy

Ignore references to temperature / heat or labour or technology.

[10]

M4.(a) $(Q = mc\Delta T)$

 $= 50 \times 4.18 \times 27.3$

If incorrect (eg mass = 0.22 or 50.22 g) CE = 0/2

1

= **5706 J** (accept 5700 and 5710)

Accept 5.7 kJ with correct unit. Ignore sign.

1

(b) M_r of 2-methylpropan-2-ol = 74(.0)

For incorrect M_r, lose M1 but mark on.

1

Moles = mass $/ M_r$

= 0.22 / 74(.0)

= 0.00297 moles

1

 $\Delta H = -5706 / (0.002970 \times 1000)$

= -1921 (kJ mol⁻¹)

If 0.22 is used in part (a), answer = -8.45 kJ mol⁻¹ scores 3

(Allow -1920, -1919)

If uses the value given (5580 J), answer = $-1879 \text{ kJ mol}^{-1}$ scores 3

Answer without working scores M3 only.

Do not penalise precision.

Lack of negative sign loses M3

1

(c) $\Delta H = \Sigma \Delta H$ products $-\Sigma \Delta H$ reactants OR a correct cycle

Correct answer with no working scores 1 mark only.

1

 $\Delta H = -(-360) + (4 \times -393) + (5 \times -286)$

M2 also implies M1 scored.

1

 $\Delta H = -2642$ (kJ mol⁻¹) This answer only.

1

(d) (-2422 – part (b)) × 100 / -2422 Ignore negative sign.

Expect answers in region of 20.7

If error carried forward, 0.22 allow 99.7 If 5580 J used earlier, then allow 22.4

1

(e) Reduce the distance between the flame and the beaker / put a sleeve around the flame to protect from drafts / add a lid / use a copper calorimeter rather than a pyrex beaker / use a food calorimeter

Any reference to insulating material around the beaker must be on top.

Accept calibrate the equipment using an alcohol of known enthalpy of combustion.

1

(f) Incomplete combustion

[11]

M5.(a) M1 (could be scored by a correct mathematical expression

Correct answer to the calculation gains all of M1, M2 and M3

M1
$$\Delta H = \Sigma \Delta H_i$$
 (products) – $\Sigma \Delta H_i$ (reactants)

Credit 1 mark for - 101 (kJ mol-1)

OR a <u>correct cycle of balanced equations</u>

$$M2 = -1669 - 3(-590)$$

= -1669 + 1770
(This also scores M1)

 $M3 = + 101 (kJ mol^{-1})$

Award 1 mark ONLY for - 101

For other incorrect or incomplete answers, proceed as follows

• check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would

score 2 marks (M1 and M2)

• If no AE, check for a correct method; this requires either a correct cycle with 3Sr <u>and</u> 2Al OR a clear statement of **M1** which could be in words and scores **only M1**

M4 - Using powders

Any one from

- To <u>increase collision frequency / collisions in a given time / rate of collisions</u>
- To <u>increase the surface contact</u> / <u>contact between the solids / contact between</u> (exposed) <u>particles</u>

Ignore dividing final answer by 3

Penalise M4 for reference to molecules.

5

M5 Major reason for expense of extractionAny **one** from

- Aluminium is extracted by electrolysis **OR** aluminium extraction uses (large amounts of) electricity
- Reaction / process / It / the mixture requires heat
- It is endothermic
- (b) Calcium has a higher melting point than strontium, because *Ignore general Group 2 statements.*

Correct reference to size of cations / proximity of electrons

M1 (For Ca) delocalised <u>electrons closer to cations / positive ions / atoms / nucleus</u>

OR cations / positive ions / atoms are smaller

OR cation / positive ion / atom or it has fewer (electron) shells / levels

Penalise **M1** if either of Ca or Sr is said to have <u>more or less</u> delocalised electrons OR the same nuclear charge. Ignore reference to shielding.

Relative strength of metallic bonding

M2 (Ca) has <u>stronger</u> attraction between the <u>cations / positive ions / atoms / nucleus</u> and the <u>delocalised electrons</u>

OR

stronger metallic bonding

(assume argument refers to Ca but credit converse argument for Sr)

CE= 0 for reference to molecules or Van der Waals forces or intermolecular forces or covalent bonds.

M3 Magnesium hydroxide is used as an antacid / relieve indigestion (heartburn) / neutralise (stomach) acidity / laxative

Not simply "milk of magnesia" in M3

[10]

3