Q1. Vanadium is an important metal.	Ferrovanadium,	an alloy of iron	and vanadium,	is used to
make a strong type of vanadiu	m-steel. Pure va	nadium is used i	in nuclear react	ors.

	V ₂ O ₅ (s)	CaO(s)
ΔH _f ^θ / kJ mol ⁻¹	-1560	-635

In the oldest method of extraction of vanadium, V_2O_5 is reacted with calcium at a high temperature.

$$5Ca(s) + V_2O_5(s) \longrightarrow 2V(s) + 5CaO(s)$$

Use data from the table and the equation to calculate the standard enthalpy change for this reaction.

State the type of reaction that V_2O_5 has undergone.

Suggest **one** major reason why this method of extracting vanadium is expensive, other than the cost of heating the reaction mixture.

(5)

(b) Ferrovanadium is produced by the reaction of aluminium with a mixture of V_2O_5 and iron(III) oxide.

Write an equation for the reaction of aluminium with iron(III) oxide.

		State the change in oxidation state of aluminium in this reaction.	
			(2)
			(-)
	(c)	Pure vanadium, for nuclear reactors, is formed by the reaction of hydrogen with purified VCl_2	
		Write an equation for this reaction in which the only other product is HCl gas.	
		Identify two hazards in this process, other than the fact that it operates at a high temperature.	
		Deduce why this process produces \textbf{pure} vanadium, other than the fact that purified VCl_2 is used.	
		(Total 11 m	(4) arks)
Q2 .(a)		an equation, including state symbols, for the reaction with enthalpy change equal to standard enthalpy of formation for $CF_4(g)$.	
			(1)

(b) Explain why CF₄ has a bond angle of 109.5°.

(2)
1/1

(c) **Table 1** gives some values of standard enthalpies of formation $(\Delta_t H^p)$.

Table 1

Substance	F ₂ (g)	CF₄(g)	HF(g)
Δ _t H ^e / kJ mol ⁻¹	0	-680	-269

The enthalpy change for the following reaction is -2889 kJ mol⁻¹.

$$C_2H_6(g) + 7F_2(g) \longrightarrow 2CF_4(g) + 6HF(g)$$

Use this value and the standard enthalpies of formation in **Table 1** to calculate the standard enthalpy of formation of $C_2H_6(g)$.

Standard enthalpy of formation of
$$C_2H_6(g) = \dots kJ \text{ mol}^{-1}$$
 (3)

(d) Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in Table 2.

Table 2

Bond	C-H	C-F	H-F
Mean bond enthalpy / kJ	412	484	562

	mol ⁻¹					
		son for the hig	h reactiv	ity of flu	orine is a weak	F-F
Is th	e student correct? Justify you	ur answer with	a calcula	ation usii	ng these data.	
						(4)
					(Tota	(4) al 10 marks)
			method	l used fo	r the extraction	of
		acting scrap irc	on with lo	ow-grade	e ores that cont	ain
(i)			vith antir	mony sul	fide to form	
						(1)
(ii)	Write a half-equation to sho	w what happer	ns to the	iron ato	ms in this reac	ion.
						(1)
						(-)
sulfi	de is roasted in air to convert					
(i)	Write an equation for this re	eaction.				
						(1)
	ony is mony Antiantiir (i)	A student suggested that one real bond. Is the student correct? Justify you state the student correct that is used it mony depends on the grade of the Antimony can be extracted by reantimony sulfide (Sb ₂ S ₃). (i) Write an equation for the reantimony and iron(II) sulfide in the student correct converted in air to convert dioxide.	A student suggested that one reason for the hig bond. Is the student correct? Justify your answer with a solid element that is used in industry. The mony depends on the grade of the ore. Antimony can be extracted by reacting scrap incommon antimony sulfide (Sb ₂ S ₃). (i) Write an equation for the reaction of iron wantimony and iron(II) sulfide. (ii) Write a half-equation to show what happen and incommon and iron the reaction of antimony from the first stage of the extraction of antimony from the sulfide is roasted in air to convert it into antimon dioxide.	A student suggested that one reason for the high reactive bond. Is the student correct? Justify your answer with a calculation of the student correct? Justify your answer with a calculation of the student correct? Justify your answer with a calculation of the student correct? Justify your answer with a calculation of the student correct of the ore. Antimony can be extracted by reacting scrap iron with antimony sulfide (Sb,S ₃). (i) Write an equation for the reaction of iron with antimantimony and iron(II) sulfide. (ii) Write a half-equation to show what happens to the sulfide is roasted in air to convert it into antimony (III) oxidioxide.	A student suggested that one reason for the high reactivity of flubond. Is the student correct? Justify your answer with a calculation using the student correct? Justify your answer with a calculation using the student correct? Justify your answer with a calculation using the student correct? Justify your answer with a calculation using the student correct properties. Only is a solid element that is used in industry. The method used for mony depends on the grade of the ore. Antimony can be extracted by reacting scrap iron with low-grade antimony sulfide (Sb ₂ S ₃). (i) Write an equation for the reaction of iron with antimony sulfide. (ii) Write a half-equation to show what happens to the iron ato using the strategy of the extraction of antimony from a high-grade sulfide is roasted in air to convert it into antimony(III) oxide (Sb ₂ S ₂ C dioxide.	A student suggested that one reason for the high reactivity of fluorine is a weak bond. Is the student correct? Justify your answer with a calculation using these data. (Total only is a solid element that is used in industry. The method used for the extraction mony depends on the grade of the ore. Antimony can be extracted by reacting scrap iron with low-grade ores that contantimony sulfide (Sb ₂ S ₂). (i) Write an equation for the reaction of iron with antimony sulfide to form antimony and iron(II) sulfide. (ii) Write a half-equation to show what happens to the iron atoms in this reaction of the first stage of the extraction of antimony from a high-grade ore, antimony sulfide is roasted in air to convert it into antimony(III) oxide (Sb ₂ O ₂) and sulfur dioxide.

	formed in this reaction.		ctured direct		
	ne second stage of the extr nony(III) oxide is reacted v				
(i)	Use the standard enthalp below the table to calcula reaction.				
		Sb ₂ O ₃ (s)	CO(g)	Sb(I)	CO ₂ (g)
	Δ <i>H</i> ₁⊕ / kJ mol⁻¹	-705	-111	+20	-394
(ii)	Suggest why the value for antimony, given in the tal	or the standar	rd enthalpy c		
(ii)	antimony, given in the tal	or the standar	rd enthalpy o	of formation	of liquid
ii)	antimony, given in the tal	or the standar	d enthalpy o	of formation	of liquid

(d)		e one reason why the method of extraction of a ped in part (a), is a low-cost process. Do not inc	•	•
				 (1) (Total 10 marks)
flavo and	ourings b water.	methylpropan-2-ol, (CH₃)₃COH, reacts to form es y the food industry. The alcohol can be oxidised	d to produce	carbon dioxide
dete burn	rmine its er and p	rried out an experiment on a pure sample of 2-r s enthalpy of combustion. A sample of the alcoh ositioned under a beaker containing 50 cm³ of v illowed to burn for several minutes before it was	ol was place vater. The s	ed into a spirit pirit burner was
The	results fo	or the experiment are shown in Table 1 .		
		Table 1		
		Initial temperature of the water / °C	18.1	
		Final temperature of the water / °C	45.4	
		Initial mass of spirit burner and alcohol / g	208.80	
		Final mass of spirit burner and alcohol / g	208.58	
(a)	the cor The sp	e results from Table 1 to calculate a value for the nbustion of this sample of 2-methylpropan-2-ol. ecific heat capacity of water is 4.18 J K ⁻¹ g ⁻¹ . your working.		gy released from

		culate an answer t s 5580 J. This is n o			ne that the
An equa		oustion of 2-methyl $H(I) + 6O_2(g)$			
Table 2	, ,	andard enthalpy o	, , ,	, ,	
		Table 2			
		(CH ₃) ₃ COH(I)	O ₂ (g)	CO ₂ (g)	H ₂ O(I)
	∆ <i>H</i> ₁⊕ / kJ mol⁻¹	-360	0	-393	-286

		(3)
(d)	An accurate value for the enthalpy of combustion of 2-methylpropan-2-ol in which water is formed as a gas is –2422 kJ mol ⁻¹ . Use this value and your answer from part (b) to calculate the overall percentage error in the student's experimental value for the enthalpy of combustion of 2-methylpropan-2-ol.	
		(1)
(e)	Suggest one improvement that would reduce errors due to heat loss in the student's experiment.	
		(1)
(f)	Suggest one other source of error in the student's experiment. Do not include heat loss, apparatus error or student error.	
	(Total 11 m	(1) arks)

Q5.Group 2 metals and their compounds are used commercially in a variety of processes.

(a) Strontium is extracted from strontium oxide (SrO) by heating a mixture of powdered strontium oxide and powdered aluminium.

Consider these standard enthalpies of formation.

	SrO(s)	Al ₂ O ₃ (s)
<i>ΔH</i> ,∘ / kJ mol⁻¹	– 590	– 1669

$$3SrO(s) + 2Al(s) \longrightarrow 3Sr(s) + Al_2O_3(s)$$

Use these data and the equation to calculate the standard enthalpy change for this extraction of strontium.

The use of powdered strontium oxide and powdered aluminium increases the surface area of the reactants.

Suggest one reason why this increases the reaction rate.

	Suggest one major reason why this method of extracting strontium is expensive.
•	
•	
	Explain why calcium has a higher melting point than strontium.

		(2)
		, ,
(c)	Magnesium is used in fireworks. It reacts rapidly with oxygen, burning with white light. Magnesium reacts slowly with cold water.	a bright
	Write an equation for the reaction of magnesium with oxygen.	
	Write an equation for the reaction of magnesium with cold water.	
	Give a medical use for the magnesium compound formed in the reaction of magnesium with cold water.	f
		(3)
		(Total 10 marks)