M1.		(a)	One from	
		•	Ti is not produced	
		•	TiC / carbide is produced OR titanium reacts with carbon	
		•	Product is brittle	
		•	Product is a poor engineering material Penalise "titanium carbonate" Ignore "impure titanium" Credit "titanium is brittle"	1
	(b)	<u>Hea</u>	at (energy) <u>change at constant pressure</u> QoL	1
	(c)		e enthalpy change in a reaction is independent of route taken (and depends only on the initial and final states) Credit "heat change at constant pressure" as an alternative to "enthalpy change"	1
	(d)		The enthalpy change / heat change at constant pressure en 1 mol of a compound / substance / product For M1, credit correct reference to molecule/s or atom/s	
		M2 is formed from its (constituent) elements		
			with <u>all reactants and products / all substances in</u> adard states	
		state	all <u>reactants and products / all substances in normal</u> <u>es under standard conditions</u> / 100 kPa / 1 bar <u>and</u> any cified T (usually 298 K) Ignore reference to 1 atmosphere	3

(e) (i) Na / it is not in its <u>standard state</u> / <u>normal state under standard conditions</u>

OR

<u>Standard state</u> / <u>normal state under standard conditions</u> for Na is solid / (s)

QoL

Ignore "sodium is a liquid or sodium is not a solid"

1

(ii) M1 $\triangle H_r = \sum \triangle H_r$ (products) - $\sum \triangle H_r$ (reactants)

M2
$$\Delta$$
H_r = 4(-411) - (-720) - 4(+3) = -1644 + 720 - 12 (This also scores M1)

M3 = -936 (kJ mol⁻¹)

Correct answer gains full marks

Credit 1 mark for + 936 (kJ mol-1)

Credit 1 mark for – 924 (kJ mol⁻¹)i.e. assuming value for Na(l) = 0

For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either
 a transposition error or an incorrect multiplication; this
 would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with 2Cl₂ and 4Na OR a clear complete statement of M1 which could be in words and scores only M1

3

(iii) Reducing agent

Ignore "reduces titanium"

OR reductant OR reduces TiCl4

OR electron donor

1

[7]

M2. (a) Heat (energy) change at constant pressure

Ignore references to standard conditions, but credit specified pressure.

1

- (b) The <u>enthalpy change/heat (energy) change</u> (at constant pressure) in a reaction is independent of the route/path taken (and depends only on the initial and final states)
- 1

(c) $\Delta H + 963 = -75 - 432 \text{ OR } \Delta H + 963 = -507 \text{ (M1)}$

$$\Delta H = -75 - 432 - 963$$
 (**M1** and **M2**)

 $\Delta H = -1470 \text{ (kJ mol}^{-1})$

Award 1 mark for + 1470

Award full marks for correct answer

Ignore units.

Ignore numbers on the cycle

M1 and M2 can score for an arithmetic error

[5]

3

- **M3**. (a) (i) **M1** The enthalpy change / heat change at constant pressure when 1 mol of a compound / substance / product
- 1

M2 Is formed from its (constituent) <u>elements</u>

1

M3 With all reactants and products / all substances in standard states

OR

All reactants and products / all substances in normal states under standard conditions / 100 kPa / 1 bar and specified T / 298 K

Ignore reference to 1 atmosphere

1

(ii) By definition

OR

Because they are elements

1

- (iii) M1 $\Delta H_t = \Sigma \Delta H_t$ (products) $-\Sigma \Delta H_t$ (reactants)
 - **M2** = -1669 3(-558) (This also scores M1)

1

1

M3 = (+) 5 (kJ mol⁻¹)

Correct answer gains full marks.

Assume the value is positive unless specifically stated as negative.

Credit 1 mark if -5 (kJ mol⁻¹).

For other incorrect or incomplete answers, proceed as follows:

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with 3BaO OR a clear statement of M1 which could be in words and scores only M1

1

- (b) (i) One from
 - Aluminium is expensive (to extract OR due to electrolysis)
 - High energy cost
 - The <u>cost of heating strongly</u>
 This requires a clear statement about <u>cost</u>

1

- (ii) One from
 - increase collision frequency
 - OR more collisions
 - OR more chance of colliding
 The answer MUST refer to more collisions.
 Ignore "more available to collide"

1

(c) (i) Ba + $2H_2O \rightarrow Ba(OH)_2 + H_2$

Ignore state symbols
Allow multiples and correct ionic equations

1

M2 White precipitate / white solid Ignore state symbols Ignore "milky"

1

(iii) **M1** Barium meal or (internal) X-ray or to block X-rays

1

1

M2 BaSO₄ / barium sulfate is insoluble (and therefore not toxic)

Accept a correct reference to M1 written in the explanation in M2, unless contradictory.

For M2 NOT barium ions NOT barium NOT barium meal and NOT "It". Ignore radio-tracing.

[14]

M4.(a) Enthalpy change when 1 mol of compound (1)

Is formed from it's elements (1)

All substances in their standard state (1)

3

(b) $\Delta H = \Sigma \Delta H^{\circ}_{c} \text{ (reactants)} - \Sigma \Delta H^{\circ}_{c} \text{ (products)}$ (1) = (7x - 394) + (4x - 286) - (-3909) (1)

 $= + 7 \text{ kJmol}^{-1} (1)$

3

(c) Heat change = $m c \Delta T (1)$