Q1. A	greer	n solution, \mathbf{X} , is thought to contain $[Fe(H_2O)_6]^{2+}$ ions.	
	(a)	The presence of these ions can be confirmed by reacting separate samples of solution X with aqueous ammonia and with aqueous sodium carbonate.	
		Write equations for each of these reactions and describe what you would observe.	
			(4)
	(b)	A 50.0 cm³ sample of solution X was added to 50 cm³ of dilute sulfuric acid and made up to 250 cm³ of solution in a volumetric flask.	
		A 25.0 cm ³ sample of this solution from the volumetric flask was titrated with a 0.0205 mol dm ⁻³ solution of KMnO ₄	
		At the end point of the reaction, the volume of KMnO ₄ solution added was 18.70 cm ³ .	
		(i) State the colour change that occurs at the end point of this titration and give a reason for the colour change.	
			(2)

(ii) Write an equation for the reaction between iron(II) ions and manganate(VII)

	ions.		
	Use this equation and the information $gin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ven to calculate the concentr	ation of
			(5) (Total 11 marks)
	of these pieces of apparatus has the lowest pe urement shown?	rcentage uncertainty in the	
Α	Volume of 25 cm³ measured with a burette with an uncertainty of ±0.1 cm³.	0	
В	Volume of 25 cm³ measured with a measuring cylinder with an uncertainty of ±0.5 cm³.	0	
С	Mass of 0.150 g measured with a balance with an uncertainty of ±0.001 g.	0	
D	Temperature change of 23.2 °C measured with a thermometer with an uncertainty of ±0.1 °C.	0	
			(Total 1 mark)

Q3.N-phenylethanamide is used as an inhibitor in hydrogen peroxide decomposition and also in

the production of dyes.

N-phenylethanamide can be produced in a laboratory by the reaction between phenylammonium sulfate and an excess of ethanoic anhydride:

(a)	A student carried out this preparation using 1.15 g of phenylammonium sulfate (M_r = 284.1) and excess ethanoic anhydride.		
(C ₆ H	₅ NH ₃	$_{2}$ SO ₄ + 2(CH ₃ CO) ₂ O \rightarrow 2C ₈ H ₅ NHCOCH ₃ + 2CH ₃ COOH + H ₂ SO ₄	
	(i)	Calculate the maximum theoretical yield of N-phenylethanamide that could be produced in the reaction. Record your answer to an appropriate precision.	
		Show your working.	
			(3)
			(0)
	(ii)	In the preparation, the student produced 0.89 g of N-phenylethanamide.	
		Calculate the percentage yield for the reaction.	
			(1)
(b)		student purified the crude solid product, N-phenylethanamide, by ystallisation.	
	(i)	Outline the method that the student should use for this recrystallisation.	

Outline how you would carry out a simple laboratory process to show that the recrystallised product is a pure sample of N-phenylethanamide. Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.	Outline how you would carry out a simple laboratory process to show that recrystallised product is a pure sample of N-phenylethanamide.	the
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Assume that the reaction goes to completion. Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
Suggest two practical reasons why the percentage yield for this reaction may not be 100%.		
not be 100%.	Assume that the reaction goes to completion.	
1		nay
	1	
2	2	
<u> </u>	<u> </u>	

	(c)	The reaction to form N-phenylethanamide would happen much more quickly if the student used ethanoyl chloride instead of ethanoic anhydride.
		Explain why the student might prefer to use ethanoic anhydride, even though it has a slower rate of reaction.
		(2) (Total 15 marks)
Q4. T		aximum errors for the pipette and the burette are shown below. These errors take into bunt multiple measurements.
	Pipe Bure	tte ± 0.05 cm ³ tte ± 0.15 cm ³
	Estir	nate the maximum percentage error in using each of these pieces of apparatus.
	Use	an average titre 24.25 cm³ to calculate the percentage error in using the burette.
	Shov	w your working.
	Pipe	tte
	Bure	tte
		(Total 2 marks)