Q1. S		igh a b	e cleaned before they are painted. The rods are cleaned by passing them path of dilute sulfuric acid. This process produces large quantities of iron(II)	
	(a)	Write	e an equation for the reaction between iron and dilute sulfuric acid.	
				(1)
	(b)	preca	e one chemical hazard in this process and suggest an appropriate safety aution for this hazard.	
		Preca	aution(Total 3 ma	(2) arks)
Q2.		In this	question give all your answers to three significant figures.	
			n nitrate decomposes on heating to form magnesium oxide, nitrogen dioxide n as shown in the following equation.	
			$2Mg(NO_3)_2(s) \rightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$	
	(a)		mal decomposition of a sample of magnesium nitrate produced 0.741 g of nesium oxide.	
		(i)	Calculate the amount, in moles, of MgO in 0.741 g of magnesium oxide.	
				(2)
		(ii)	Calculate the total amount, in moles, of gas produced from this sample of magnesium nitrate.	
				(1)

(b)	produ at 33	nother experiment, a different sample of magnesium nitrate decomposed to uce 0.402 mol of gas. Calculate the volume, in dm³, that this gas would occupy 3 K and 1.00×10^5 Pa. gas constant $R = 8.31$ J K⁻¹ mol⁻¹)	
			(3)
(c)		0152 mol sample of magnesium oxide, produced from the decomposition of nesium nitrate, was reacted with hydrochloric acid.	
		$MgO + 2HCI \rightarrow MgCI_2 + H_2O$	
	(i)	Calculate the amount, in moles, of HCl needed to react completely with the 0.0152 mol sample of magnesium oxide.	
			(1)
	(ii)	This 0.0152 mol sample of magnesium oxide required 32.4 cm³ of hydrochloric acid for complete reaction. Use this information and your answer to part (c) (i) to calculate the concentration, in mol dm³, of the hydrochloric acid.	
		(Total 8 mai	(1) rks)

Q3.A student was given a task to determine the percentage purity of a sample of salicylic acid. The method used by the student to prepare a solution of salicylic acid is described below.

- 0.500 g of an impure sample of salicylic acid was placed in a weighing bottle.
- The contents were tipped into a beaker and 100 cm³ of distilled water were added.

- Salicylic acid does not dissolve well in cold water so the beaker and its contents were heated gently until all the solid had dissolved.

 The solution was poured into a 250 cm³ graduated flask and made up to the mark
- with distilled water.

salicylic acid solution.	
The pH of this solution was measured and a value of 2.50 was obtained.	
Calculate the concentration of salicylic acid in this solution. Assume that salicylic acid is the only acid in this solution. The K_a for salicylic acid is 1.07×10^{-3} mol dm ⁻³ . You may represent salicylic acid as HA. Show your working.	
Use your answer to part (b) to calculate the mass of salicylic acid (M_r = 138.0) present in the original sample.	
(If you were unable to complete the calculation in part (b), assume that the concentration of salicylic acid is 8.50×10^{-3} mol dm ⁻³ . This is not the correct answer.)	

(d)	use (If y	d to make the solution. ou were unable to complete the calculation in part (c), assume that the mass of cylic acid is 0.347 g. This is not the correct answer.)	
		(Total 8 ma	(1) arks)
Q4. (a)	pois	e metal ions are toxic to humans. A substance that can be used to treat such coning contains the ion EDTA⁴. ΓA⁴ forms very stable complexes with metal ions. These complexes are not c.	
	(i)	Write an equation for the reaction of EDTA ⁴⁻ with aqueous copper(II) ions, $[Cu(H_2O)_6]^{2^+}$.	
			(1)
	(ii)	A solution containing EDTA ⁴⁻ can also be used in a titration to determine the concentration of metal ions in solution. A river was polluted with copper(II) ions. When a 25.0 cm³ sample of the river water was titrated with a 0.0150 mol dm⁻³ solution of EDTA⁴-, 6.45 cm³ were required for complete reaction. Calculate the concentration, in mol dm⁻³, of copper(II) ions in the river water. Show your working.	
			(2)
(b)	wate	e determination of the concentration of copper(II) ions in a single sample of river er gives an unreliable value for the copper(II) ion pollution in the river. e one reason why this value is unreliable.	
			(1)

(c)	Silver complexes can be used to identify a particular organic functional groundlive one example of a silver complex that can be used in this way and state organic functional group it identifies.	
	Silver complex	
	Organic functional group	(2)
		(Total 6 marks)
05.4		
Q5. Aspirin	n can be made by reacting salicylic acid with ethanoic anhydride as outlined b	elow.
	OH + CH_3-C O CH_3 + CH_3-C O CH_3 + CH_3-C	ОН
(a)	In an experiment, after purification by recrystallisation, 1.76 g of aspirin (<i>M</i> , were produced from 2.00 g of salicylic acid. Calculate the percentage yield for this experiment.	= 180.0)
		(2)
		, ,
(b)	Suggest one practical reason why the yield of purified aspirin is less than 1	00%.
		(1) (Total 3 marks)

Q6. Norgessaltpeter was the first nitrogen fertiliser to be manufactured in Norway. It has

the formula Ca(NO₃)₂

(a)

(b)

С	$aCO_3(s) + 2HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + CO_2(g) + H_2O(I)$	
In an	experiment, an excess of powdered calcium carbonate was added to 36.2 cm ³ 586 mol dm ⁻³ nitric acid.	
(i)	Calculate the amount, in moles, of HNO $_3$ in 36.2 cm 3 of 0.586 mol dm $^{-3}$ nitric acid. Give your answer to 3 significant figures.	
		(1)
(ii)	Calculate the amount, in moles, of CaCO₃ that reacted with the nitric acid. Give your answer to 3 significant figures.	
		(1)
(iii)	Calculate the minimum mass of powdered CaCO₃ that should be added to react with all of the nitric acid.	
	Give your answer to 3 significant figures.	
		(2)
(iv)	State the type of reaction that occurs when calcium carbonate reacts with nitric acid.	

Norgessaltpeter decomposes on heating as shown by the following equation.

$$2Ca(NO_3)_2(s) \longrightarrow 2CaO(s) + 4NO_2(g) + O_2(g)$$

A sample of Norgessaltpeter was decomposed completely.

The gases produced occupied a volume of $3.50 \times 10^{-3} \,\mathrm{m}^3$ at a pressure of 100 kPa and a temperature of 31 °C. (The gas constant $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$)

	(i)	Calculate the total amount, in moles, of gases produced.				
			(3)			
			` '			
	/ii\	Honce calculate the amount in males, of evygen produced				
	(ii)	Hence calculate the amount, in moles, of oxygen produced.				
			(1)			
(c)		ated calcium nitrate can be represented by the formula $Ca(NO_3)_2.xH_2O$ where x integer.				
	A 6.0	4 g sample of Ca(NO₃)₂.xH₂O contains 1.84 g of water of crystallisation.				
	Use this information to calculate a value for x . Show your working.					
		(Total 12 ma	(3) rks)			

	etal lead reacts with warm dilute nitric acid to produce lead(II) nitrate, nitrogen oxide and water according to the following equation.	
	$3Pb(s) + 8HNO3(aq) \longrightarrow 3Pb(NO3)2(aq) + 2NO(g) + 4H2O(g)$	I)
(a)	In an experiment, an 8.14 g sample of lead reacted completely with a 2.00 mol dm ⁻³ solution of nitric acid.	
	Calculate the volume, in dm³, of nitric acid required for complete reaction. Give your answer to 3 significant figures	
	(Extra space)	
		(3)
(b)	In a second experiment, the nitrogen monoxide gas produced in the reaction occupied 638 cm 3 at 101 kPa and 298 K. Calculate the amount, in moles, of NO gas produced. (The gas constant $R = 8.31 \text{ J K}^{4} \text{ mol}^{-1}$)	

	(Ext	ra space)	
			(3)
			, ,
(c)		en lead(II) nitrate is heated it decomposes to form lead(II) oxide, nitrogen dioxide oxygen.	
	(i)	Balance the following equation that shows this thermal decomposition.	
		Pb(NO ₃) ₂ (s) \longrightarrow PbO(s) +NO ₂ (g) +O ₂ (g)	
			(4)
			(1)
	(ii)	Suggest one reason why the yield of nitrogen dioxide formed during this reaction is often less than expected.	
			(1)
			(-,
	(iii)	Suggest one reason why it is difficult to obtain a pure sample of nitrogen dioxide from this reaction.	
			(1)
		(Total 9 ma	