M1.(a) M1 Lone pair on N labelled b more available / more able to be donated than lone pair on N labelled $a$

Ignore $N(b)$ more readily accepts protons.
Ignore $N(b)$ is stronger base.

M2 lp or electrons or electron density on N labelled a :
delocalized into_(benzene) ring
QoL

M3 Ip or electrons or electron density on N labelled $b$ :
methyl / alkyl groups electron releasing or donating or (positive) inductive effect or push electrons or electron density

QoL
(b) $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2}$

Any order.

M2. (a) (i) conc $\mathrm{HNO}_{3}$
conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
allow 1 for both acids if either conc missing
$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$ or $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$
(iii) electrophilic substitution $\mathrm{CH}_{3}$

horseshoe must not extend beyond C 2 to C 6 but can be smaller + must not be too close to Cl
(b) Sn or $\mathrm{Fe} / \mathrm{HCl}$ (conc or dil or neither) or $\mathrm{Ni} / \mathrm{H}_{2}$ not $\mathrm{NaBH}_{4} \mathrm{LiAlH}_{4}$
(c) (i) $\mathrm{NH}_{3}$

Use an excess of ammonia
(ii) nucleophilic substitution

M3 structure


M3.D

M4. (a) M1 Benzene is more stable than cyclohexatriene
more stable than cyclohexatriene must be stated or implied

If benzene more stable than cyclohexene, then penalise M1 but mark on
If benzene less stable: can score M2 only

M2 Expected $\Delta H^{\circ}$ hydrogenation of $\mathrm{C}_{6} \mathrm{H}_{6}$ is $3(-120)$

$$
=-360 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Allow in words e.g. expected $\Delta H^{\circ}$ hydrog is three times the $\Delta H^{\circ}$ hydrog of cyclohexene

M3 Actual $\Delta \mathrm{H}^{\circ}$ hydrogenation of benzene is
$152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (less exothermic)
or $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ different from expected Ignore energy needed

M4 Because of delocalisation or electrons spread out or resonance
1
(b) No mark for name of mechanism

Conc $\mathrm{HNO}_{3}$
If either or both conc missing, allow one;

Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
this one mark can be gained in equation
$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$
OR
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$
OR via two equations
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}$
$\mathrm{H}_{2} \mathrm{NO}_{3}+\rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}$
Allow + anywhere on $\mathrm{NO}_{2}{ }^{+}$


OR

M1


M2
M1 arrow from within hexagon to N or + on N
Allow $\mathrm{NO}_{2}{ }^{+}$in mechanism
horseshoe must not extend beyond C2 to C6 but can be smaller

+ not too close to C1
M3 arrow into hexagon unless Kekule
allow M3 arrow independent of M2 structure
ignore base removing H in M3
+ on H in intermediate loses M2 not M3
(c) If intermediate compound $V$ is wrong or not shown, max 4 for 8(c)

or chlorocyclohexane or bromocyclohexane


## Reaction 3

M2 HBr

M3 Electrophilic addition
Allow M2 and M3 independent of each other
Reaction 4
M4 Ammonia if wrong do not gain M5
Allow M4 and M6 independent of each other
M5 Excess ammonia or sealed in a tube or under pressure1If CE e.g. acid conditions, lose M4 and M5
M6 Nucleophilic substitution1
(d) Lone or electron pair on NNo marks if reference to "Ione pair on N" missing1Delocalised or spread into ring in $U$1
Less available (to accept protons) or less able to donate (to $\mathrm{H}^{+}$) ..... 1

