Q1. (a) Name and outline a mechanism for the formation of butylamine, $CH_3CH_2CH_2CH_2NH_2$, by the reaction of ammonia with 1-bromobutane, $CH_3CH_2CH_2CH_2Br$.

Name of mechanism

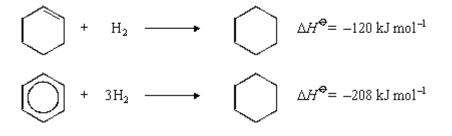
Mechanism

(5)

(3)

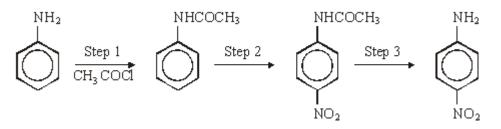
(b) Butylamine can also be prepared in a two-step synthesis starting from 1-bromopropane, CH₃CH₂CH₂Br. Write an equation for each of the two steps in this synthesis. *Step 1 Step 2*(c) (i) Explain why butylamine is a stronger base than ammonia.

(ii) Identify a substance that could be added to aqueous butylamine to produce a basic buffer solution.


(d) Draw the structure of a tertiary amine which is an isomer of butylamine.

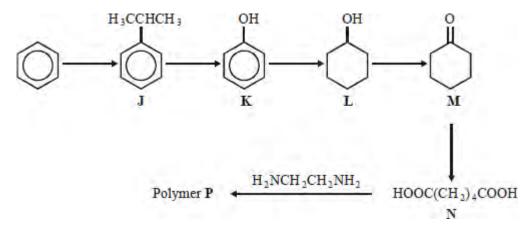
(1) (Total 12 marks)

(3)


Q2. (a) Use the following data to show the stability of benzene relative to the hypothetical cyclohexa-1,3,5-triene.

Give a reason for this difference in stability.

(4)


(b) Consider the following reaction sequence which starts from phenylamine.

- (i) State and explain the difference in base strength between phenylamine and ammonia.
- (ii) Name and outline a mechanism for the reaction in Step 1 and name the organic product of Step 1.
- (iii) The mechanism of Step 2 involves attack by an electrophile. Give the reagents used in this step and write an equation showing the formation of the electrophile.
 Outline a mechanism for the reaction of this electrophile with benzene.
- (iv) Name the type of linkage which is broken in Step 3 and suggest a suitable reagent for this reaction.

(17) (Total 21 marks)

Q3.This question is about the following reaction scheme which shows the preparation of polymer **P**.

Polymer **P** is formed in a two-step reaction from **N**. The first stage is a neutralisation reaction. The volume, in cm³, of a 0.20 mol dm⁻³ solution of $H_2NCH_2CH_2NH_2$ required to neutralise 6.8 × 10⁻³mol of the acid **N** is

- **A** 17
- **B** 34
- **C** 68
- **D** 136

(5)

(2)

Q4.	(a) Methylamine is a weak Brønsted-Lowry base and can be used in aqueous solution with one other substance to prepare a basic buffer.	
	(i)	Explain the term <i>Brønsted-Lowry base</i> and write an equation for the reaction of methylamine with water to produce an alkaline solution.
		Brønsted-Lowry base
		Equation
	(ii)	Suggest a substance that could be added to aqueous methylamine to produce a basic buffer.
	(iii)	Explain how the buffer solution in part (a)(ii) is able to resist a change in pH when a small amount of sodium hydroxide is added.
(b)	Explain why methylamine is a stronger base than ammonia.	

(c) A cation is formed when methylamine reacts with a large excess of bromoethane. Name the mechanism involved in the reaction and draw the structure of the cation formed.

Name of mechanism

Structure

(2) (Total 9 marks)