M1.(a)
M1 $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow \quad 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \quad+2 \mathrm{CO}_{2}$
($2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$)

Penalise $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ for ethanol in M1.
M2 and M3
Mark M2 and M3 independently.
Any two conditions in any order for M2 and M3 from

- (enzymes from) yeast or zymase
- $\quad 25^{\circ} \mathrm{C} \leq \mathrm{T} \leq 42{ }^{\circ} \mathrm{C} \quad \mathrm{OR} \quad 298 \mathrm{~K} \leq \mathrm{T} \leq 315 \mathrm{~K}$
- anaerobic / no oxygen / no air OR neutral pH

A lack of oxygen can mean either without oxygen or not having enough oxygen and does not ensure no oxygen, therefore only credit "lack of oxygen" if it is qualified.
Penalise 'bacteria', 'phosphoric acid', 'high pressure' using the list principle.

M4 (fractional) distillation or GLC
Ignore reference to 'aqueous' or 'water' (ie not part of the list principle).

M5 Carbon-neutral in this context means
There is no net / overall (annual) carbon dioxide / CO_{2} emission to the atmosphere

OR
There is no change in the total amount / level of carbon dioxide / CO_{2} present_ in the atmosphere

For M5 - must be about CO_{2} and the atmosphere.
The idea that the carbon dioxide $/ \mathrm{CO}_{2}$ given out equals the carbon dioxide $/ \mathrm{CO}_{2}$ that was taken in from the atmosphere.
(b) $\quad \mathbf{M 1 q}=\mathrm{mc} \Delta \mathrm{T}$ (this mark for correct mathematical formula)

Full marks for M1, M2 and M3 for the correct answer.
In M1, do not penalise incorrect cases in the formula.
$\mathbf{M 2}=(75 \times 4.18 \times 5.5)$
1724 (J) OR 1.724 (kJ) OR 1.72 (kJ) OR 1.7 (kJ)

Ignore incorrect units in M2.
M3 Using 0.0024 mol
therefore $\Delta \mathrm{H}=\underline{-718}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(Accept a range from -708 to -719 but do not penalise more than 3 significant figures)

Penalise M3 ONLY if correct numerical answer but sign is incorrect. Therefore +718 gains two marks.
If units are quoted in M3 they must be correct.
If $\Delta T=278.5$, $C E$ for the calculation and penalise M2 and
M3.
M4 and M5 in any order
Any two from

- incomplete combustion
- heat loss
- heat capacity of Cu not included
- some ethanol lost by evaporation
- not all of the $\left(2.40 \times 10^{-3} \mathrm{~mol}\right)$ ethanol is burned / reaction is incomplete If $c=4.81$ (leads to 1984) penalise M2 ONLY and mark on for M3 = - 827
(c) (i) M1 enthalpy / heat / energy change (at constant pressure) or enthalpy / heat / energy needed in breaking / dissociating (a) covalent bond(s) Ignore bond making.

M2 averaged for that type of bond over different / a range of molecules / compounds Ignore reference to moles.
(ii) M1
$\sum \mathrm{B}($ reactants $)-\sum \mathrm{B}($ products $)=\Delta H$
OR
Sum of bonds broken - Sum of bonds formed $=\underline{\Delta H}$
OR
$\mathrm{B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}-\mathrm{O})+\mathrm{B}(\mathrm{O}-\mathrm{H})+5 \mathrm{~B}(\mathrm{C}-\mathrm{H})+3 \mathrm{~B}(\mathrm{O}=\mathrm{O})$
$-4 \mathrm{~B}(\mathrm{C}=\mathrm{O})-6 \mathrm{~B}(\mathrm{O}-\mathrm{H})=\Delta H=-1279$
Correct answer gains full marks.
Credit 1 mark for - $496\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2).
If no $A E$, check for a correct method; this requires either a correct cycle with $2 \mathrm{CO}_{2}$ and $3 \mathrm{H}_{2} \mathrm{O}$ OR a clear statement of M1 which could be in words and scores only M1.

M2 (also scores M1)
$348+360+463+5(412)+3 \mathrm{~B}(\mathrm{O}=\mathrm{O})$
(3231) (or 2768 if O-H cancelled)
$-4(805)-6(463)=\Delta H=-1279$
(5998)
(or 5535 if $\mathrm{O}-\mathrm{H}$ cancelled)
$3 \mathrm{~B}(\mathrm{O}=\mathrm{O})=1488\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Credit a maximum of one mark if the only scoring point is bonds formed adds up to 5998 (or 5535) OR bonds broken includes the calculated value of 3231 (or 2768).

M3
$\mathrm{B}(\mathrm{O}=\mathrm{O})=\underline{496}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Award 1 mark for -496

Students may use a cycle and gain full marks

M2.(a) (i) M 1 c (oncentrated) phosphoric acid / c(onc.) $\mathrm{H}_{3} \mathrm{PO}_{4}$ OR c(oncentrated) sulfuric acid / c(onc.) $\mathrm{H}_{2} \mathrm{SO}_{4}$

In M1, the acid must be concentrated. Ignore an incorrect attempt at the correct formula that is written in addition to the correct name.

M2 Re-circulate / re-cycle the (unreacted) ethene (and steam) / the reactants
OR pass the gases over the catalyst several / many times
In M2, ignore "remove the ethanol".
Credit "re-use".
(ii) M1
(By Le Chatelier's principle) the equilibrium is driven / shifts / moves to the right / L to R / forwards / in the forward direction

M2 depends on a correct statement of M1
The equilibrium moves / shifts to

- oppose the addition of / increased concentration of / increased moles / increased amount of water / steam
- to decrease the amount of steam / water

Mark M3 independently

M3 Yield of product / conversion increase OR ethanol increases / goes up / gets more
(b) M1 for balanced equation

M2 for state symbols in a correctly balanced equation

$$
\begin{aligned}
& 2 \mathrm{C}(\mathrm{~s} / \text { graphite })+3 \mathrm{H}_{2}(\mathrm{~g})+ \\
& 1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})
\end{aligned}
$$

Not multiples but credit correct state symbols in a correctly balanced equation.
Penalise $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ but credit correct state symbols in a correctly balanced equation.
(c) (i) M1 The enthalpy change / heat change at constant pressure when 1 mol of a compound / substance / element

If standard enthalpy of formation $\mathbf{C E}=0$
M 2 is burned / combusts / reacts completely in oxygen
OR burned / combusted / reacted in excess oxygen
M3 with (all) reactants and products / (all) substances in standard / specified states
$\overline{O R}$ (all) reactants and products / (all) substances in normal states under standard conditions / $100 \mathrm{kPa} / 1 \mathrm{bar}$ and specified T / 298 K

For M3

Ignore reference to 1 atmosphere
(ii) M1

Correct answer gains full marks
$\Sigma \mathrm{B}($ reactants $)-\Sigma \mathrm{B}($ products $)=\Delta H$
Credit 1 mark for (+) 1279 ($\mathrm{kJ} \mathrm{mol}^{-1}$)

OR
Sum of bonds broken - Sum of bonds formed $=\Delta H$ OR
$\mathrm{B}(\mathrm{C}-\mathrm{C})+\mathrm{B}(\mathrm{C}-\mathrm{O})+\mathrm{B}(\mathrm{O}-\mathrm{H})+5 \mathrm{~B}(\mathrm{C}-\mathrm{H})+3 \mathrm{~B}(\mathrm{O}=\mathrm{O})(\mathrm{LHS})$
$-4 B(C=O)-6 B(O-H)(R H S)=\underline{\Delta H}$
M2 (also scores M1)
$348+360+463+5(412)+3(496)$ [LHS $=4719]$
(2060) (1488)
$-4(805)-6(463)[R H S=-5998]=\Delta H$
(3220) (2778)

OR using only bonds broken and formed (4256-5535)
For other incorrect or incomplete answers, proceed as follows

- check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2)
- If no AE, check for a correct method; this requires either a correct cycle with 2C and 6H and 7O OR a clear statement of M1 which could be in words and scores only M1

M3

$\Delta \mathrm{H}=\mathbf{- 1 2 7 9}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
Allow a maximum of one mark if the only scoring point is LHS = 4719 OR RHS $=5998$

Award 1 mark for +1279
Candidates may use a cycle and gain full marks
(d) (i) Reducing agent $O R$ reductant $O R$ electron donor $O R$ to reduce the copper oxide

Not "reduction".
Not "oxidation".
Not "electron pair donor".

(ii) $\mathrm{CH}_{3} \mathrm{COOH}$

M3.(a) (Enthalpy change to) break the bond in 1 mol of chlorine (molecules)
Allow (enthalpy change to) convert 1 mol of chlorine molecules into atoms
Do not allow energy or heat instead of enthalpy, allow heat energy

To form (2 mol of) gaseous chlorine atoms / free radicals
Can score 2 marks for 'Enthalpy change for the reaction':
$\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{g})$
Equation alone gains M2 only
Can only score M2 if 1 mol of chorine molecules used in M1 (otherwise it would be confused with atomisation enthalpy)
Any mention of ions, $C E=0$
(b) (For atomisation) only 1 mol of chlorine atoms, not 2 mol (as in bond enthalpy) is formed / equation showing $1 / 2 \mathrm{~mol}$ chlorine giving 1 mol of atoms

Allow breaking of one bond gives two atoms
Allow the idea that atomisation involves formation of 1 mol of atoms not 2 mol
Allow the idea that atomisation of chlorine involves half the amount of molecules of chlorine as does dissociation Any mention of ions, $C E=0$
(c) (i) $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CIF}(\mathrm{g})$
(ii) $\Delta H=1 / 2 \mathrm{E}(\mathrm{F}-\mathrm{F})+1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})-\mathrm{E}(\mathrm{Cl}-\mathrm{F})$

Allow correct cycle
$\mathrm{E}(\mathrm{Cl}-\mathrm{F})=1 / 2 \mathrm{E}(\mathrm{F}-\mathrm{F})+1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})-\Delta H$
$=79+121-(-56)$
$=256\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
-256 scores zero
Ignore units even if wrong
(iii) $1 / 2 \mathrm{Cl}_{2}+3 / 2 \mathrm{~F}_{2} \rightarrow \mathrm{ClF}_{3}$

If equation is doubled $C E=0$ unless correcr answer gained by / 2 at end This would score M1

$$
\begin{aligned}
& \Delta H=1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})+3 / 2 \mathrm{E}(\mathrm{~F}-\mathrm{F})-3 \mathrm{E}(\mathrm{Cl}-\mathrm{F}) \\
& =121+237-768 /(\text { or } 3 \times \text { value from }(\mathrm{c})(\mathrm{ii})) \\
& \text { This also scores } M 1 \text { (note }=358-768)
\end{aligned}
$$

$$
\begin{aligned}
& =-410\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& \quad \text { If given value of } 223 \text { used ans }=-311 \\
& \text { Allow } 1 / 3 \text { for }+410 \text { and }+311
\end{aligned}
$$

(iv) (Bond enthalpy of) $\mathrm{Cl}-\mathrm{F}$ bond in CIF is different from that in CIF_{3}

Allow Cl-F bond (enthalpy) is different in different compounds (QoL)
(d) NaCl is ionic / not covalent
(b) M1 enthalpy / heat (energy) change / required / needed to break / dissociate a covalent bond (or a specified covalent bond)

Ignore bond making
Ignore standard conditions
M2 requires an attempt at M1
M2 average / mean over different molecules / compounds / substances
(c) M 1
\sum (bonds broken) $-\sum$ (bonds formed) $=\Delta H$
M1 could stand alone
OR
Sum of bonds broken - Sum of bonds formed $=\Delta H$
Award full marks for correct answer
M2 (also scores M1)
Ignore units
$4(+388)+163+2(146)+4(463)-944-8(463)=\Delta H$
OR broken +3859 (2007) formed - 4648 (2796)
M3
$\Delta \mathrm{H}=\mathbf{- 7 8 9}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
Two marks can score with an arithmetic error in the working
Award 1 mark for + 789
Credit one mark only for calculating either the sum of the bonds broken or the sum of the bonds formed provided this is the only mark that is to be awarded

Students may use a cycle and gain full marks

