M1. (a) enthalpy change/ heat energy change when 1 mol of a substance
is completely burned in oxygen
at 298 K and 100 kPa or standard conditions (not 1atm)
(b) $\quad \Delta \mathrm{H}=\sum$ bonds broken $-\sum$ bonds formed
$=(6 \times 412)+612+348+(4.5 \times 496)-((6 \times 743)+(6 \times 463))$
$=-1572 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) by definition $\Delta H_{\text {t }}$ is formation from an element
(d) $\Delta H_{c}=\sum \Delta H_{f}$ products $-\sum \Delta H_{f}$ reactants or cycle
$=(3 \times-394)+(3 \times-242)-(+20)$
$=-1928 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(e) bond enthalpies are mean/average values 1
from a range of compounds

M2. (a) enthalpy (or energy) to break (or dissociate) a bond;
averaged over different molecules (environments);
1
enthalpy (or heat energy) change when one mole of a compound;
is formed from its elements;
in their standard states;
(b) enthalpy change $=\Sigma$ (bonds broken) $-\Sigma$ (bonds formed) or cycle;
$=4 \times 388+163+2 \times 146+4 \times 463-(944+8 \times 463)$;
(or similar)
$=-789$;
(+ 789 scores 1 only)
(c) (i) zero;
(ii) $\quad A H=\Sigma$ (enthalpies of formation of products) $-\Sigma$ (enthalpies of formation of reactants)
$=4 \times-242-(75+2 \times-133)$;
$=-777$;
(+ 777 scores one only)
(d) mean bond enthalpies are not exact
(or indication that actual values are different from real values)

M3. (a) $\Delta H=\Sigma$ (bonds broken) $-\Sigma$ (bonds formed) (or cycle)
$=+146-496 / 2$ (or $2 \times 463+146-(2 \times 463+496 / 2)$
$=-102\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$
(accept no units, wrong units loses a mark; +102 scores (1) only)
(b) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ equation (1) Correct state symbols (1)
(c) (i) Macromolecular
(accept giant molecule or carbon has many (4) bonds)
(ii) $\Delta H=\Sigma \Delta H_{\text {(}}$ (products) $-\Sigma \Delta H_{f}$ (reactants) (or cycle)

$$
=715+4 \times 218-(-74.9)
$$

$$
=1662\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

(accept no units, wrong units loses one mark, allow 1660 to 1663, -1662 scores one mark only)
(iii) $\quad 1662 / 4=415.5$
(mark is for divide by four, allow if answer to (c)(ii) is wrong)

M5. (a) (Energy required) to break a given covalent bond (1) averaged over a range of compounds (1)

Penalise first mark if 'energy'/ 'enthalpy' evolved
(b) (i) $4 \times \mathrm{C}-\mathrm{H}=4 \times 413=+1652$
$1 \times \mathrm{C}-\mathrm{C}=1 \times 347=347$
$1 \times \mathrm{C}=\mathrm{O}=1 \times 736=736$
$21 / 2 \times \mathrm{O}=\mathrm{O}=2.5 \times 498=1245(1)$
$=2735+1245=+3980(1)$
first mark for 4 : 1: 1 or 2735 ignore sign
(ii) $4 \times \mathrm{H}-\mathrm{O}=-4 \times 464=-1856$
$4 \times \mathrm{C}-\mathrm{O}=-4 \times 736=-2944(1)$
$=-4800(1)$
First mark for 4 : 4
(iii) $\quad \Delta \mathrm{H}_{\mathrm{R}}=\Sigma$ Bonds broken $-\Sigma$ Bonds made $=+3980-4800=-820(1)$
Conseq Mark for incorrect answers in (i) and (ii) as (i) Answer + (ii) Answer =

M6.(a) Enthalpy (Energy) to break a (covalent) bond (1) OR dissociation energy Varies between compounds so average value used (1) QL mark

OR average of dissociation energies in a single molecule / e.g. CH_{4}

Do not allow mention of energy to form bonds but with this case can allow second mark otherwise $2^{\text {nd }}$ mark consequential on first
(b) (i) $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$ (1)
(ii) $\quad \Delta \mathrm{H}=(\Sigma)$ bonds broken $-(\Sigma)$ bonds formed (1)
$=1 / 2 \times 944+3 / 2 \times 436-3 \times 388(1)$
$=-38 \mathrm{~kJ} \mathrm{~mol}^{-1}(1)$
Ignore no units, penalise wrong units
Score $2 / 3$ for -76
$1 / 3$ for +38
Allow $1 / 3$ for +76
(c) $\quad 4(\mathrm{C}-\mathrm{H})+(\mathrm{C}=\mathrm{C})+(\mathrm{H}-\mathrm{H})-(6(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{C}))=-136(1)$
$\mathrm{OR}(\mathrm{C}=\mathrm{C})+(\mathrm{H}-\mathrm{H})-((\mathrm{C}-\mathrm{C})+2(\mathrm{C}-\mathrm{H}))=-136$
$2(\mathrm{C}-\mathrm{H})=836$ (1)
$(\mathrm{C}-\mathrm{H})=418\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$
Note: allow (1) for -836
another (1) for -418

