Q1.	(a)	Define the term standard enthalpy of combustion, ΔH_c°

(b) Use the mean bond enthalpy data from the table and the equation given below to calculate a value for the standard enthalpy of combustion of propene. All substances are in the gaseous state.

(3)

(3)

Bond	C == C	С—С	С—Н	O == O	O == C	О—Н
Mean bond enthalpy/ kJ mol⁻¹	612	348	412	496	743	463

- (c) State why the standard enthalpy of formation, $\Delta H_{\rm r}^{\rm e}$, of oxygen is zero. (1)
- (d) Use the data from the table below to calculate a more accurate value for the standard enthalpy of combustion of propene.

Standard ^e / kJ mol ⁻	enthalpy of formation, ΔH_{r}	+20	-394	-242	
					(3)
(e)	Explain why your answe part (d).	r to part (b) is	a less accurate	e value than you	ur answer to
					(2) (Total 12 marks)
Q2.	(a) Explain the meaning	g of the terms i	mean bond ent	thalpy and stan	dard enthalpy
	of formation. Mean bond enthalpy				
	Standard enthalpy of forr	nation			

(b) Some mean bond enthalpies are given below.

Bond	N–H	N–N	N≡N	H–O	0–0
Mean bond enthalpy/kJ mol⁻¹	388	163	944	463	146

Use these data to calculate the enthalpy change for the following gas-phase reaction between hydrazine, N_2H_4 , and hydrogen peroxide, H_2O_2

(c) Some standard enthalpies of formation are given below.

	$N_2H_4(g)$	H ₂ O ₂ (g)	H₂O(g)
ΔH _f /kJ mol⁻¹	+75	-133	-242

These data can be used to calculate the enthalpy change for the reaction in part (b).

(3)

$$N_2H_4(g) + 2H_2O_2(g) \rightarrow N_2(g) + 4H_2O(g)$$

- (i) State the value of ΔH_t^{Θ} for $N_2(g)$.
- (ii) Use the Δ*H*^e values from the table to calculate the enthalpy change for this reaction.

		(4)
(d)	Explain why the value obtained in part (b) is different from that obtained in part (c)(ii).	
	(Total 13 ma	(1) rks)

Q3. (a) The table below contains some mean bond enthalpy data.

Bond	H–O	0–0	O=O
Mean bond enthalpy/kJ mol⁻¹	463	146	496

The bonding in hydrogen peroxide, H_2O_2 , can be represented by H–O–O–H. Use these data to calculate the enthalpy change for the following reaction.

$$H_2O_2(g) \to H_2O_2(g) + \frac{1}{2}O_2(g)$$

(3)

(b) The standard enthalpy of formation, ΔH₁[•] for methane, is –74.9 kJ mol⁻¹. Write an equation, including state symbols, for the reaction to which this enthalpy change applies.

.....

	$\frac{1}{2} H_2(g) \rightarrow H(g) \qquad \Delta H^{\bullet} = +218 \text{ kJ mol}^{-1}$
	$C(s) \rightarrow C(g)$ $\Delta H^{\bullet} = +715 \text{ kJ mol}^{-1}$
(i)	By reference to its structure, suggest why a large amount of heat energy is required to produce free carbon atoms from solid carbon.
(ii)	Parts (b) and (c) give enthalpy data for the formation of $CH_4(g)$, $H(g)$ and $C(g)$. Use these data and Hess's Law to calculate the value of the enthalpy change for the following reaction.
	$CH_4(g) \rightarrow C(g) + 4H(g)$
(iii)	Use your answer from part (c)(ii) to calculate a value for the mean bond enthalpy of a C–H bond in methane.
	(5)
	(Total 10 marks)

The enthalpy changes for the formation of atomic hydrogen and atomic carbon from their respective elements in their standard states are as follows.

(c)

Q4. Given the following data

C(s) +
$$2H_2(g) \rightarrow CH_4(g)$$
 $\Delta H = -75 \text{ kJ mol}^{-1}$

 $H_2(g) \rightarrow 2H(g)$ $\Delta H = +436 \text{ kJ mol}^{-1}$

which one of the following is the enthalpy change, in kJ mol⁻¹, of the reaction below?

$$CH_{\scriptscriptstyle 4}(g) \to C(s) + 4H(g)$$

- Α -947
- В +511
- C +797
- D +947

(Total 1 mark)

(2)

Q5. (a) State what is meant by the term *mean bond enthalpy*.

Gaseous ethanal burns as shown by the equation

$$CH_3CHO(g) + 2\frac{1}{2}O_2(g) \rightarrow 2H_2O(g) + 2CO_2(g)$$

Use the mean bond enthalpy data given below to answer the following questions.

Bond	Mean bond enthalpy/kJ mol⁻¹
С—Н	+413
C—C	+347

C==O	+736
O==O	+498
О—Н	+464

(i)	Calculate the enthalpy change which occurs when all the bonds in the reactants shown in the above equation are broken.
(::)	
(ii)	Calculate the enthalpy change which occurs when all the bonds in the products shown in the above equation are formed.
(iii)	Hence, calculate the enthalpy change for the complete combustion of ethanal as shown in the equation above.
	(5)
	(Total 7 marks)

Q6.The table below contains some mean bond enthalpy data.

Bond	Н—Н	C—C	C=C	N≡N	N—H
Mean bond enthalpy / kJ mol⁻¹	436	348	612	944	388

(a)	Ехр	Explain the term <i>mean bond enthalpy</i> .					
			(2				
(b)	(i)	Write an equation for the formation of one mole of ammonia, NH₃, from its elements.					
	(ii)	Use data from the table above to calculate a value for the enthalpy of					

ormation of ammonia.	
	• • • •

(4)

(c) Use the following equation and data from the table above to calculate a value for the C–H bond enthalpy in ethane.

.....

(-)
/31
(3)
(Total 9 marks)
LIULALI III III II NSI