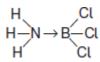

Q1.A hydrogen peroxide molecule can be represented by the structure shown.

(a) Suggest a value for the H-O-O bond angle.

(1)

- (b) Hydrogen peroxide dissolves in water.
 - (i) State the strongest type of interaction that occurs between molecules of hydrogen peroxide and water.

.....(1)


(ii) Draw a diagram to show how one molecule of hydrogen peroxide interacts with one molecule of water.

Include all lone pairs and partial charges in your diagram.

	H_2O_2 .			····y	tne boilin	g point of	H ₂ S ₂ IS 10\	wer than
								(Tota
follo	wing table sh	owe the c	loctropod	ativity val	ios of tho	olomonto	from lithi	um to
uorin	owing table sh	ows the e	electroneg	alivily vali	ies or the	elements	s irom nun	um to
uorin	e.							
			<u> </u>			<u> </u>	<u> </u>	<u> </u>
		Li	Be	В	С	N	0	F
Elec	tronegativity	1.0	1.5	2.0	2.5	3.0	3.5	4.0
						′ .		
	(Extra s	pace)						
	(ii) Suggest fluorine.	why the	electroneç	gativity of	the eleme	ents increa	ases from	lithium to
	(ii) Suggest fluorine.	why the	electroneç	gativity of	the eleme	ents increa	ases from	lithium

	e the type of bonding in lithium fluoride. ain why a lot of energy is needed to melt a sample of solid lithium fluoride.
Bon	ding
Expl	anation
(Ext	ra space)
Dod	use why the handing in nitragen evide is sevelent rether then isnic
Dec	uce why the bonding in nitrogen oxide is covalent rather than ionic.
	uce why the bonding in hitrogen oxide is covalent rather than ionic.
	ra space)
(Ext	ra space)
(Ext	ra space)
(<i>Ext</i>	gen forms several different compounds with fluorine.

		(iii)	One of these compounds of oxygen and fluorine has a relative molecular mass of 70.0 and contains 54.3% by mass of fluorine.	
			Calculate the empirical formula and the molecular formula of this compound. Show your working.	
			Empirical formula	
			Molecular formula	
				(4)
			(Total 14 ma	
Q3. (a)	Ammon	ia ga	as readily condenses to form a liquid when cooled.	
		(i)	Name the strongest attractive force between two ammonia molecules.	
				(1)
		(ii)	Draw a diagram to show how two ammonia molecules interact with each other in the liquid phase.	
			Include all partial charges and all lone pairs of electrons in your diagram.	
				(3)
			nonia reacts with boron trichloride to form a molecule with the following sture.	

The	following table	e shows t	he electro	onegativit	vy values	of some	alamants	
THE	Tollowing table	H	Li	В	C C	O	F	
Electr	onegativity	2.1	1.0	2.0	2.5	3.5	4.0	
(ii)	Suggest the combination	formula o of two dif	f an ionic ferent ele	compou ements fro	nd that is om the ta	formed ble.	y the che	emical

Q4. Which of these atoms has the highest electronegativity?

- A Na o
- B Mg o
- C CI O
- D Ar

(Total 1 mark)

Q5.Ethanedioic acid is a weak acid.

Ethanedioic acid acts, initially, as a monoprotic acid.

$$HO = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \end{bmatrix}$$

(a) Use the concept of electronegativity to justify why the acid strengths of ethanedioic acid and ethanoic acid are different.

(6)

(b) A buffer solution is made by adding 6.00 × 10⁻² mol of sodium hydroxide to a solution containing 1.00 × 10⁻¹ mol of ethanedioic acid (H₂C₂O₄). Assume that the sodium hydroxide reacts as shown in the following equation and that in this buffer solution, the ethanedioic acid behaves as a monoprotic acid.

	$H_2C_2O_4(aq) +$	OH-(aq) —	→ HC₂O₄–(a	$(q) + H_2O(1)$)
--	-------------------	-----------	------------	-----------------	---

The dissociation constant K_a for ethanedioic acid is 5.89 × 10⁻² mol dm⁻³.

Calculate a value for the pH of the buffer solution. Give your answer to the appropriate number of significant figures.

(c) In a titration, the end point was reached when 25.0 cm³ of an acidified solution containing ethanedioic acid reacted with 20.20 cm³ of 2.00 ×10-2 mol dm-3 potassium manganate(VII) solution.

Deduce an equation for the reaction that occurs and use it to calculate the original concentration of the ethanedioic acid solution.

Equation

Calculation

Original concentration = mol dm⁻³

(Total 15 marks)