M1.	 (a) Ability/power of an atom/element/nucleus to withdraw electron density or electron cloud or a pair of electrons (towards itself); Not withdraw an electron If ref to ionic, metallic , imf etc then CE = 0 From a <u>covalent bond</u> or from a shared pair of electrons; Not distort Not remove electrons 	1
(b)	Van der Waals/ vdw/London/ <u>temporary</u> (induced) dipole/ dispersion forces;	1
	Hydrogen bonds/H bonds; <i>Not just hydrogen</i>	1
(c)	 (Large) electronegativity difference between N + H/ difference of 0.9/ N very electronegative; Insufficient to say N= 3.1 and H = 2.1 Forms N δ– / H δ+ or dipole explained in words; Not N becomes (fully) negative or vice versa Lone pair on N attracts/forms weak bonds with H (δ+); 	1
(d)	QWC Can score M2 and 3 from a diagram	1
(3)	If not correct then CE = 0. If covalent/blank mark on. Both electrons/ lone pair (on P/PH₃) Not lone pair on hydrogen	1
	Shares/donated from P(H ₃)/ to H(δ +);	1

- (e) 3 bonds and 1 lp attached to As; Must label H and As atoms Accept distorted tetrahedral not bent tetrahedral 1 Pyramidal/tetrahedral/ trigonal pyramidal; Not bipyramidal/triangular 1 (f) (Only) weak Van der Waals forces between molecules /AsH₃ has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds; Accept has no H bonds. Ignore dp-dp in AsH₃ provided ammonia has stronger IMF. *If between atoms mentioned CE=0* Break bonds CE = 01
- (g) $4AsCl_3 + 3NaBH_4 \rightarrow 4AsH_3 + 3NaCl + 3BCl_3;$ Accept multiples

[14]

M2.		 (a) tendency / strength / ability / power of an <u>atom</u> / <u>element</u> / <u>nucleus</u> to attract / pull / withdraw electron<u>s</u> / e - density / bonding pair / shared pair 						
		pair	/ snare	d pair		1		
		in a <u>i</u>	covaler	<u>nt</u> bon	d	1		
	(b)	(i)	F_2	=	van der Waals' / induced/temporary dipole-dipole / dispersion / London forces	1		
			CH₃F		dipole-dipole ust 'dipole')			

		HF = hydrogen bonding (not just 'H' / 'hydrogen')	1
	(ii)	 large difference in electronegativity between H and F / F most/very/much more electronegative / values '4' & '2.1' quoted (not just 'high<u>er</u>') *H-F^o dipole created or dipole clearly implied (accept arguments such as 'uneven charge in bond'/ 'polar bond' ∴ F slightly negative / H slightly positive) attraction/bond formed between δ+H and lone pair on F (M2 / M3 may be scored from a diagram) (CE if full charges shown - lose M2 and M3) 	1
(c)	(i)	<pre>van der Waals' / induced/temporary dipole-dipole / dispersion / London forces / attractions (ignore references to dipole-dipole) increase with the increasing M_i / size / mass / N° of e⁻ / size of e⁻ cloud (in the hydrogen halides) (if ionic, or if 'covalent bonds broken' = CE = 0) (mark M1 and M2 separately)</pre>	1
	(ii)	hydrogen bonding stronger than van der Waals' attraction/forces (accept hydrogen bonding is very strong / strongest) (accept arguments such as 'HF has H-bonds, others <u>only</u> have van der Waals') (not just 'HF has H-bonding')	1

[11]

M4.

- (a) (i) Covalent **(1)**
 - (ii) Co-ordinate **(1)** (or dative)
 - (iii) Both / two / pair electrons come from nitrogen (1)

(iv) 4 bonding / electron pairs (1)

repel equally (1) OR are identical

as far apart as possible **(1)** *OR to position of minimum repulsion*

tetrahedron (1)

(b) Power (or ability) of an element / atom to attract electron pair/electrons/ an electron/electron density (1)

in a covalent bond **(1)** Allow attract from, withdraw in, do not allow remove from, withdraw from.

(c) (i) Electron deficient **(1)** Or small, slight, partial positive charge

(ii) H < N **(1)**

[11]

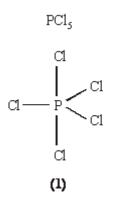
7

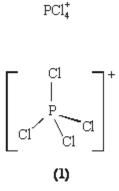
2

(than hydrogen) electrons / <u>bonding</u>
1
causes H⁵⁺
1
<u>iles;</u> 1
es; 1
IMF in methanol;
nanol, allow comparison,
1

[5]

4


M6.(a)(i)Electronegativity (difference) or suitable description (1)Accept F and Cl are highly electronegative
Not both atoms are highly electronegative


- (ii) HF = hydrogen bonding (1) HCl = (permanent) dipole-dipole bonding or even van de Waals' (1) Hydrogen bonding stronger / is the strongest IMF (1) Accept a statement that HF must have the stronger IMF, even if no IMFs identified The explanation must be based on <u>intermolecular</u> forces/attractions Note: if the explanation is <u>clearly intramolecular</u> = CE
- (b) Electron <u>pair</u> or lone <u>pair</u> donated (1) Do not accept 'donation of electrons'

From chloride ion to Al or AlCl₃ (1)

M1 can be earned by a general explanation of coordinate bonding, even if the electron pair is said to come from Al. The second mark, M2, is for this specific bond Ignore missing charge

(c)

PCl₅ shown as trigonal bipyramid [Look for: ONE solid linear Cl-P-Cl bond]

Bond Angle(s) 90° and 120° (1)

NO solid linear CI-P-CI bonds] Bond angle(s) 109 or 109.5° (1)

PCl₄⁺ shown as tetrahedral

[10]

2