M1.(a) Macromolecular / giant covalent / giant molecule Not giant atomic

- 1

No delocalised electrons / no free ions / no free charged particles

1

1

 $SiO_2 + 6HF \longrightarrow H_2SiF_6 + 2H_2O$ (c) Accept multiples

[3]

M1 $550 \times \frac{95}{}$ = 579 g would be 100% mass **M2**.(a) Allow alternative methods. There are 4 process marks:

1

So $65 = 8.91 \text{ moles NaN}_3$

or

(b)

550 M1

= 8.46 moles NaN_3 (this is 95%)

So 100% would be $8.46 \times \frac{95}{9} = 8.91 \text{ moles NaN}_3$ M2

1: mass ÷ 65

2: mass or moles × 100 / 95 or × 1.05

3: moles NaN₃ × 2

4: moles NaNH₂ × 39

1

Then M3 Moles NaNH₂ = 8.91 \times 2 = (17.8(2) moles)

M4 mass NaNH₂ = $17.8(2) \times 39$ 1 693 or 694 or 695 (g) M5 If 693, 694 or 695 seen to 3 sig figs award 5 marks 1 (b) M1 308 K and 150 000 Pa 1 150 000×7.5×10⁻² 8.31×308 1 $M3 = 4.4(0) \text{ or } 4.395 \text{ moles } N_2$ Allow only this answer but allow to more than 3 sig figs 1 M4 Moles NaN₃ = 4.395 $\times \frac{2}{3}$ (= 2.93) M4 is for $M3 \times \frac{2}{3}$ 1 Mass NaN₃ = $(2.93) \times 65$ M5 is for moles M4 × 65 1 M6 = 191 gAllow 190 to 191 g allow answers to 2 sig figs or more 1 (c) (i) 150 / 65 = 2.31 moles NaN_3 or 2.31 moles nitrous acid 1 Conc = 2.31 × 500 M2 is for $M1 \times 1000 / 500$ 1 4.6(1) or 4.6(2) (mol dm⁻³) Only this answer 1 $3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$ (ii) Can allow multiples 1

(d) Ionic If not ionic then CE = 0/31 Oppositely charged ions / Na⁺ and N₃ ions Penalise incorrect ions here but can allow M3 1 Strong attraction between (oppositely charged) ions / lots of energy needed to overcome (strong) attractions (between ions) M3 dependent on M2 1 (e) (i) $N \equiv N \longrightarrow N_{-}$ Only 1 (ii) CO_2 / N_2O / BeF_2 / HN_3 Allow other correct molecules 1 (iii) MgN_6 Only 1 [21] **M3.**(a) 2-bromo-2,3-dimethylbutane Ignore punctuation. 1 $C_nH_{2n+1}Br$ or $C_nH_{2n+1}X$ or $C_xH_{2x+1}Br$ Any order.

Stronger / more vdw (forces) between molecules (of 1-bromohexane)

QoL

Allow converse arguments for Z Not just more IMF. Ignore size of molecule.

1

(b)

C₂H₄CI

Any order

[5]

1

1

M4.(a) (i) d (block) OR D (block)

Ignore transition metals / series.

Do not allow any numbers in the answer.

(ii) Contains positive (metal) ions or protons or nuclei and <u>delocalised / mobile / free / sea of electrons</u>

Ignore atoms.

1

1

Strong attraction between them or strong metallic bonds

Allow 'needs a lot of energy to break / overcome' instead of 'strong'.

If strong attraction between incorrect particles, then CE = 0 / 2

If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then CE=0.

(iii)

OR

M1 is for regular arrangement of atoms / ions (min 6 metal particles).

M2 for + sign in each metal atom / ion. Allow 2^+ sign.

2

(iv) <u>Layers / planes / sheets of atoms or ions</u> can slide over one another *QoL*.

1

(b) (i) 1s² 2s² 2p⁶ 3s² 3p⁶ 3dఠ (4s⁶) Only.

1

(ii) $NiCl_2.6H_2O + 6 SOCl_2 \longrightarrow NiCl_2 + 6 SO_2 + 12 HCl$ Allow multiples.

1

NaOH / NH3 / CaCO3 / CaO

Allow any name or formula of alkali or base.

Allow water.

[9]

1

M5.(a) Giant covalent / giant molecular / macromolecular Not giant alone.

Not covalent alone.

1

(b) Shared pair of electrons / one electron from each C atom

(c) No delocalised / free / mobile electrons

Allow all (outer) electrons involved in (covalent) bonds. Ignore ions.

1

1

(d) CH

Allow HC C and H must be capital letters.

[4]

M6.(a)

Mark is for correct number of bonds and lone pair in each case.

Ignore charges if shown.

2

Pyramidal / trigonal pyramid

Allow tetrahedral.

1

107°

Allow 107 to 107.5°.

1

(b) M1 Ionic

CE = 0/3 if not ionic.

M2 Oppositely charged ions / TI⁺ and Br⁻ ions

If molecules / intermolecular forces / metallic bonding, CE=0.

1

M3 Strong attraction between ions

M3 dependent on M2.

Allow 'needs a lot of energy to break / overcome' instead of 'strong'.

1

(c) $TI + \frac{1}{2}B\Gamma_2 \longrightarrow TIBr$

Allow multiples.

Ignore state symbols even if incorrect.

[8]