```
M1.(a) (i) \(3(-120)-(-208)=-152\)
    OR
    \(3(120)-208=152\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\)
    Must show working and answer and maths must be correct,
                but ignore sign
```

(ii) Electrons delocalised OR delocalisation (QOL) ORallow reference to resonance (QOL)
(b) x, y, w

Must be in this order
(c) (i) $\quad-240\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

Must have minus sign
(ii) between -239 and -121 $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$

Must have minus sign
(iii) Must specify which diene:

Proximity - for 1,3 C=C bonds are close together allow converse for 1,4 diene

Delocalisation - for 1,3 some delocalisation OR some overlap of electrons, π clouds or p orbitals allow converse for 1,4 diene
some extra stability for the 1,3 - isomer

M2.(a) $\mathrm{Sn} / \mathrm{HCl}$ OR $\mathrm{Fe} / \mathrm{HCl}$ not conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ nor any HNO_{3}
Ignore subsequent use of NaOH
Ignore reference to Sn as a catalyst with the acid
Allow H_{2} (Ni/Pt) but penalise wrong metal
But NOT NaBH $\mathrm{LiAlH}_{4} \mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Equation must use molecular formulae

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}+12[\mathrm{H}]$
$12[\mathrm{H}]$ and $4 \mathrm{H}_{2} \mathrm{O}$ without correct molecular formula scores 1 out of 2

$$
\rightarrow \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Allow $+6 \mathrm{H}_{2}$ if $\mathrm{H}_{2} / \mathrm{Ni}$ used
Allow - CONH - or -COHN - or $-\mathrm{C}_{6} \mathrm{H}_{4}-$

Mark two halves separately: lose 1 each for

- error in diamine part
- error in diacid part
- error in peptide link
- missing trailing bonds at one or both ends
- either or both of H or OH on ends Ignore n
(b) $\quad \mathrm{H}_{2}(\mathrm{Ni} / \mathrm{Pt})$ but penalise wrong metal NOT $\mathrm{Sn} / \mathrm{HCl}, \mathrm{NaBH}_{4}$ etc.
CH_{2}

In benzene 120°

In cyclohexane $109^{\circ} 28^{\prime}$ or $1091_{2}{ }^{\circ}$
Allow $108^{\circ}-110^{\circ}$
If only one angle stated without correct qualification, no mark awarded
(c) (i) Nucleophilic addition

M4 for Ip , arrow and $\mathrm{H}+$
M2

- M2 not allowed independent of M1, but allow M1 for correct attack on C+
- + rather than $\delta+$ on $C=O$ loses $M 2$
- M3 is for correct structure including minus sign but lone pair is part of M4
- Allow $\mathrm{C}_{2} \mathrm{H}_{5}$
- M1 and M4 include Ip and curly arrow
- Allow M4 arrow to \underline{H} in $\mathrm{H}_{2} \mathrm{O}$ (ignore further arrows)
(ii) M1 Planar $\mathrm{C}=\mathrm{O}$ (bond / group)

Not just planar molecule

M3 (about product): Racemic mixture formed OR 50:50 mixture or each enantiomer equally likely

M3. (a) M1 Benzene is more stable than cyclohexatriene
more stable than cyclohexatriene must be stated or implied If benzene more stable than cyclohexene, then penalise M1 but mark on
If benzene less stable: can score M2 only

M2 Expected ΔH° hydrogenation of $\mathrm{C}_{6} \mathrm{H}_{6}$ is $3(-120)$

$$
=-360 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Allow in words e.g. expected ΔH° hydrog is three times the ΔH° hydrog of cyclohexene

M3 Actual $\Delta \mathrm{H}^{\circ}$ hydrogenation of benzene is
$152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (less exothermic)
or $152 \mathrm{~kJ} \mathrm{~mol}^{-1}$ different from expected
Ignore energy needed

M4 Because of delocalisation or electrons spread out or resonance
(b) No mark for name of mechanism

Conc HNO_{3}
If either or both conc missing, allow one;

Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
this one mark can be gained in equation
$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$

OR
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$

OR via two equations

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}^{+} \\
& \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \\
& \quad \text { Allow }+ \text { anywhere on } \mathrm{NO}_{2}^{+}
\end{aligned}
$$

(c) If intermediate compound V is wrong or not shown, max 4 for 8(c)

or chlorocyclohexane or bromocyclohexane
Reaction 3
M2 HBr
M3 Electrophilic additionAllow M2 and M3 independent of each other1
Reaction 4
M4 Ammonia if wrong do not gain M51Allow M4 and M6 independent of each other
M5 Excess ammonia or sealed in a tube or under pressure1If CE e.g. acid conditions, lose M4 and M5
M6 Nucleophilic substitution1
(d) Lone or electron pair on NNo marks if reference to "Ione pair on N" missing1
Delocalised or spread into ring in U1
Less available (to accept protons) or less able to donate (to H^{+}) 1

