M1. (a) Cyclohexane evolves $120 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(expect triene to evole) $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1) or 3×120
$360-208=152 \mathrm{~kJ}(1)$ NOT 150
152 can score first 2
QofL: benzene lower in energy / more (stated) stable (1) Not award if mentions energy required for bond breaking
due to delocalisation (1) or explained
(b) (i) phenylamine weaker (1)
if wrong no marks
lone pair on N (less available) (1) delocalised into ring (1) or "explained"
(ii) addition - elimination (1)

structure (1) M3 3 arrows (1) M4

N-phenyl ethanamide (1)
(iii) conc HNO_{3} (1)
conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1)
$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \stackrel{+}{\mathrm{N}} \mathrm{O}_{2}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}(1)$

(1) M2
(iv) peptide / amide (1)
$\mathrm{NaOH}(\mathrm{aq})(1)$
HCl conc or dil or neither
$\mathrm{H}_{2} \mathrm{SO}_{4}$ dil NOT conc
NOT just $\mathrm{H}_{2} \mathrm{O}$

Notes

(a) - 360 or 3×120 or in words (1);

- 152 NOT 150 (1); (152 can get first two marks)
- Q of L benzene more stable but not award if ΔH values used to say that more energy is required by benzene for hydrogenation compared with the triene or if benzene is only compared with cyclohexene (1);
- delocalisation or explained (1)
(b) (ii) or N -phenylacetamide or acetanilide mechanism: if shown as substitution can only gain M1 if $\mathrm{CH}_{3} \mathrm{CO}+$ formed can only gain M1 lose M 4 if Cl^{-}removes H^{+} be lenient with structures for M1 and M2 but must be correct for M3 $\mathrm{C}=$ alone loses M2
(iii) No marks for name of mechanism in this part
if conc missing can score one for both acids (or in equation)
allow two equations
allow $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}^{2+}+\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$
ignore side chain in mechanism even if wrong arrow for M1 must come from niside hexagon arrow to $\mathrm{NO}_{2}{ }^{+}$must go to N but be lenient over position of + + must not be too near "tetrahedral" Carbon horseshoe from carbons 2-6 but don't be too harsh
(iv) reagent allow NaOH

HCl conc or dil or neither
$\mathrm{H}_{2} \mathrm{SO}_{4}$ dil or neither but not conc not just $\mathrm{H}_{2} \mathrm{O}$

M2.A

