M1.(a) Enthalpy change (to separate) 1 mol of an (ionic) substance into its ions
If ionisation or hydration / solution, $C E=0$
If atoms / molecules / elements mentioned, CE $=0$
Allow heat energy change but not energy change alone.
lf forms 1 mol ions, lose M1

Forms ions in the gaseous state

If lattice formation not dissociation, allow M2 only.
Ignore conditions.
Allow enthalpy change for
$M X(s) \rightarrow M^{+}(g)+X^{-}(g)$ (or similar) for $M 1$ and $M 2$
(b) Any one of:

- Ions are point charges
- Ions are perfect spheres
- Only electrostatic attraction / bonds (between ions)
- No covalent interaction / character
- Only ionic bonding / no polarisation of ions

If atoms / molecules mentioned, $C E=0$
(c) (lonic) radius / distance between ions / size

Allow in any order.
Do not allow charge / mass or mass / charge.
(Ionic) charge / charge density
Do not allow 'atomic radius'.
(d) $\Delta H_{\mathrm{L}}=\Delta H_{\mathrm{a}}($ chlorine $)+\Delta H_{\mathrm{a}}(\mathrm{Ag})+\mathrm{I} . \mathrm{E}(\mathrm{Ag})+\mathrm{EA}(\mathrm{Cl})-\Delta \mathrm{H}_{\mathrm{e}}{ }^{\circ}$

Or cycle
If $\mathrm{AgCl}_{2}, C E=0 / 3$

$$
=121+289+732-364+127
$$

$=(+) 905\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow 1 for -905
Allow 1 for (+)844.5 (use of 121 / 2) Ignore units even if incorrect.
(e) M1 Greater

Do not penalise $\mathrm{AgCl}_{2}$

M2 (Born-Haber cycle method allows for additional) covalent interaction
Allow AgCl has covalent character.
Only score M2 if M1 is correct
OR
M1 Equal
M 2 AgCl is perfectly ionic / no covalent character

M2.(a) Chloride (ions) are smaller (than bromide ions)
Must state or imply ions.
Allow chloride has greater charge density (than bromide).
Penalise chlorine ions once only (max 2 / 3).

So the force of attraction between chloride ions and water is stronger
This can be implied from M1 and M3 but do not allow intermolecular forces.

Chloride ions attract the $\delta+$ on H of water / electron deficient H on water
Allow attraction between ions and polar / dipole water.
Penalise $\mathrm{H}^{+}$(ions) and mention of hydrogen bonding for M3 Ignore any reference to electronegativity.
Note: If water not mentioned can score M1 only.
(b) $\Delta H_{\text {socuition }}=\Delta H_{\llcorner }+\Delta H_{\text {ndd }} \mathrm{K}^{+}$ions $+\Delta H_{\text {ndd }} \mathrm{Br}^{-}$ions $/=670-322-335$

Allow $\Delta H_{\text {solution }}=\Delta H_{L}+\Sigma \Delta H_{\text {hyd }}$
$=(+) 13\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Ignore units even if incorrect.
+13 scores M1 and M2
-13 scores 0
-16 scores M2 only (transcription error).
(c) (i) The entropy change is positive / entropy increases
$\Delta S$ is negative loses M1 and M3

Because 1 mol (solid) $\rightarrow 2 \mathrm{~mol}$ (aqueous ions)/ no of particles increases Allow the aqueous ions are more disordered (than the solid). Mention of atoms / molecules loses M2

Therefore $\underline{T \Delta S>\Delta H}$
(ii) Amount of $\mathrm{KCl}=5 / \mathrm{M}_{\mathrm{r}}=5 / 74.6=\underline{0.067(0) \mathrm{mol}}$

If moles of KCl not worked out can score M3, M4 only (answer to M4 likely to be 205.7 K)

> Heat absorbed $=$ mass $\times \mathrm{sp}$ ht $\times \Delta T$ $\begin{aligned} & (1.153 \times 1000)=20 \times 4.18 \times \Delta T \\ & \quad \text { If calculation uses } 25 \mathrm{~g} \text { not } 20 \text {, lose } M 3 \text { only }(M 4=11.04, \text { M5 } \\ & =287)\end{aligned}$
$\Delta T=1.153 \times 1000 /(20 \times 4.18)=13.8 \mathrm{~K}$
If 1000 not used, can only score M1, M2, M3
M4 is for a correct $\Delta T$
Note that 311.8 K scores 4 (M1, M2, M3, M4).
$T=298-13.8=284(.2) \mathrm{K}$
If final temperature is negative, M5 $=0$
Allow no units for final temp, penalise wrong units.

M3.(a) $\quad \mathrm{MgCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g})$
(b) The magnesium ion is smaller / has a smaller radius / greater charge density (than the calcium ion)

If not ionic or if molecules / IMF / metallic / covalent / bond pair / electronegativity mentioned, $C E=0$

Attraction between ions / to the chloride ion stronger
Allow ionic bonds stronger
Do not allow any reference to polarisation or covalent character
(c) The oxide ion has a greater charge / charge density than the chloride ion If not ionic or if molecules / IMF / metallic / covalent / bond pair mentioned, $C E=0$
Allow oxide ion smaller than chloride ion

So it attracts the magnesium ion more strongly
Allow ionic bonds stronger
Mark independently
(d) $\Delta H_{\text {solution }}=\Delta H_{\mathrm{L}}+\Sigma \Delta H_{\text {ndd }} \mathrm{Mg}^{2+}$ ions $+\Sigma \Delta H_{\text {ndd }} \mathrm{Cl}$ ions

Allow correct cycle
$-155=2493+\Delta H_{\text {ndd }} \mathrm{Mg}^{2+}$ ions $-2 \times 364$
$\Delta H_{\text {ydd }} \mathrm{Mg}^{2+}$ ions $=-155-2493+728$
$=-1920\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Ignore units
Allow max 1 for +1920
Answer of + or $-1610, C E=0$
Answer of -2284, CE $=0$
(e) Water is polar / O on water has a delta negative charge

Allow $\underline{O}$ (not water) has lone pairs (can score on diagram)
$\mathrm{Mg}^{2+}$ ion / ${ }^{\text {v }} \mathrm{ve}$ ion / + charge attracts (negative) O on a water molecule
Allow Mg ${ }^{2+}$ attracts lone pair(s)
M2 must be stated in words (QoL)

## Ignore mention of co-ordinate bonds

$$
C E=0 \text { if } \mathrm{O}^{2-} \text { or water ionic or } \mathrm{H} \text { bonding }
$$

(f) Magnesium oxide reacts with water / forms $\mathrm{Mg}(\mathrm{OH})_{2}$

Allow MgO does not dissolve in water/sparingly soluble / insoluble

M4.(a) Standard pressure ( 100 kPa ) (and a stated temperature)
Allow standard conditions. Do not allow standard states
Allow any temperature
Allow 1 bar but not 1atm
Apply list principle if extra wrong conditions given
Penalise reference to concentrations
(b) Hydrogen bonds between water molecules

Energy must be supplied in order to break (or loosen) them
Allow M2 if intermolecular forces mentioned
Otherwise cannot score M2
$C E=0 / 2$ if covalent or ionic bonds broken
(c) $T=\Delta H / \Delta S$

$$
=(6.03 \times 1000) / 22.1
$$

Allow 272 to 273; units K must be given

Allow $0^{\circ} \mathrm{C}$ if units given
0.273 (with or without units) scores $1 / 3$ only

Must score M2 in order to score M3
Negative temperature can score M1 only
(d) The heat given out escapes
(e) (Red end of white) light (in visible spectrum) absorbed by ice Allow complementary colour to blue absorbed

## Blue light / observed light is reflected / transmitted / left Penalise emission of blue light

# M5.(a) Enthalpy change/heat energy change when one mole of gaseous atoms <br> Allow explanation with an equation that includes state symbols 

Ignore conditions(b) Fluorine (atom) is smaller than chlorine/shielding is less/ outer electrons closer to nucleus

Fluorine molecules/ions/charge density $C E=0$ for both marks
(Bond pair of) electrons attracted more strongly to the nucleus/protons
(c) Fluoride (ions) smaller (than chloride) / have larger charge density Any reference to electronegativity $C E=0$

So (negative charge) attracts ( $\delta+$ hydrogen on) water more strongly
Allow H on water, do not allow O on water
Allow $F$ - hydrogen bonds to water, chloride ion does not Mark independently
(d) (i) $\Delta H$ (solution) $=\mathrm{LE}+\Sigma$ (hydration enthalpies) / correct cycle $A g F_{2}$ or other wrong formula $C E=0$ Ignore state symbols in cycle

$$
L E=-20-(-464+-506)
$$

$=(+) 950 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Ignore no units, penalise M3 for wrong units
-950 scores max 1 mark out of 3
990 loses M3 but M1 and M2 may be correct
808 is transfer error (AE) scores 2 marks
848 max 1 if M1 correct
1456 CE=0 (results from $\mathrm{AgF}_{2}$ )
(ii) There is an increase in the number of particles / more disorder / less order Allow incorrect formulae and numbers provided number increases
Do not penalise reference to atoms/molecules Ignore incorrect reference to liquid rather than solution
(iii) Entropy change is positive/entropy increases and enthalpy change negative/exothermic

So $\Delta \mathrm{G}$ is (always) negative

